ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.05633
177
0

Physics-Guided Machine Learning for Uncertainty Quantification in Turbulence Models

7 November 2025
Minghan Chu
Weicheng Qian
    UD
ArXiv (abs)PDFHTML
Main:8 Pages
3 Figures
Bibliography:5 Pages
Abstract

Predicting the evolution of turbulent flows is central across science and engineering. Most studies rely on simulations with turbulence models, whose empirical simplifications introduce epistemic uncertainty. The Eigenspace Perturbation Method (EPM) is a widely used physics-based approach to quantify model-form uncertainty, but being purely physics-based it can overpredict uncertainty bounds. We propose a convolutional neural network (CNN)-based modulation of EPM perturbation magnitudes to improve calibration while preserving physical consistency. Across canonical cases, the hybrid ML-EPM framework yields substantially tighter, better-calibrated uncertainty estimates than baseline EPM alone.

View on arXiv
Comments on this paper