
LLMs are now an integral part of information retrieval. As such, their role as question answering chatbots raises significant concerns due to their shown vulnerability to adversarial man-in-the-middle (MitM) attacks. Here, we propose the first principled attack evaluation on LLM factual memory under prompt injection via Xmera, our novel, theory-grounded MitM framework. By perturbing the input given to "victim" LLMs in three closed-book and fact-based QA settings, we undermine the correctness of the responses and assess the uncertainty of their generation process. Surprisingly, trivial instruction-based attacks report the highest success rate (up to ~85.3%) while simultaneously having a high uncertainty for incorrectly answered questions. To provide a simple defense mechanism against Xmera, we train Random Forest classifiers on the response uncertainty levels to distinguish between attacked and unattacked queries (average AUC of up to ~96%). We believe that signaling users to be cautious about the answers they receive from black-box and potentially corrupt LLMs is a first checkpoint toward user cyberspace safety.
View on arXiv