Box6D : Zero-shot Category-level 6D Pose Estimation of Warehouse Boxes
- 3DPC
Accurate and efficient 6D pose estimation of novel objects under clutter and occlusion is critical for robotic manipulation across warehouse automation, bin picking, logistics, and e-commerce fulfillment. There are three main approaches in this domain; Model-based methods assume an exact CAD model at inference but require high-resolution meshes and transfer poorly to new environments; Model-free methods that rely on a few reference images or videos are more flexible, however often fail under challenging conditions; Category-level approaches aim to balance flexibility and accuracy but many are overly general and ignore environment and object priors, limiting their practicality in industrial settings.To this end, we propose Box6d, a category-level 6D pose estimation method tailored for storage boxes in the warehouse context. From a single RGB-D observation, Box6D infers the dimensions of the boxes via a fast binary search and estimates poses using a category CAD template rather than instance-specific models. Suing a depth-based plausibility filter and early-stopping strategy, Box6D then rejects implausible hypotheses, lowering computational cost. We conduct evaluations on real-world storage scenarios and public benchmarks, and show that our approach delivers competitive or superior 6D pose precision while reducing inference time by approximately 76%.
View on arXiv