ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.00264
36
0

HeartFormer: Semantic-Aware Dual-Structure Transformers for 3D Four-Chamber Cardiac Point Cloud Reconstruction

29 November 2025
Zhengda Ma
Abhirup Banerjee
    ViTMedIm3DPC
ArXiv (abs)PDFHTMLGithub (199★)
Main:8 Pages
15 Figures
Bibliography:3 Pages
11 Tables
Appendix:10 Pages
Abstract

We present the first geometric deep learning framework based on point cloud representation for 3D four-chamber cardiac reconstruction from cine MRI data. This work addresses a long-standing limitation in conventional cine MRI, which typically provides only 2D slice images of the heart, thereby restricting a comprehensive understanding of cardiac morphology and physiological mechanisms in both healthy and pathological conditions. To overcome this, we propose \textbf{HeartFormer}, a novel point cloud completion network that extends traditional single-class point cloud completion to the multi-class. HeartFormer consists of two key components: a Semantic-Aware Dual-Structure Transformer Network (SA-DSTNet) and a Semantic-Aware Geometry Feature Refinement Transformer Network (SA-GFRTNet). SA-DSTNet generates an initial coarse point cloud with both global geometry features and substructure geometry features. Guided by these semantic-geometry representations, SA-GFRTNet progressively refines the coarse output, effectively leveraging both global and substructure geometric priors to produce high-fidelity and geometrically consistent reconstructions. We further construct \textbf{HeartCompv1}, the first publicly available large-scale dataset with 17,000 high-resolution 3D multi-class cardiac meshes and point-clouds, to establish a general benchmark for this emerging research direction. Extensive cross-domain experiments on HeartCompv1 and UK Biobank demonstrate that HeartFormer achieves robust, accurate, and generalizable performance, consistently surpassing state-of-the-art (SOTA) methods. Code and dataset will be released upon acceptance at:this https URL.

View on arXiv
Comments on this paper