ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2601.04711
32
0

DSC2025 -- ViHallu Challenge: Detecting Hallucination in Vietnamese LLMs

8 January 2026
Anh Thi-Hoang Nguyen
Khanh Quoc Tran
Tin Van Huynh
Phuoc Tan-Hoang Nguyen
Cam Tan Nguyen
Kiet Van Nguyen
    HILM
ArXiv (abs)PDFHTML
Main:9 Pages
2 Figures
Bibliography:2 Pages
5 Tables
Abstract

The reliability of large language models (LLMs) in production environments remains significantly constrained by their propensity to generate hallucinations--fluent, plausible-sounding outputs that contradict or fabricate information. While hallucination detection has recently emerged as a priority in English-centric benchmarks, low-to-medium resource languages such as Vietnamese remain inadequately covered by standardized evaluation frameworks. This paper introduces the DSC2025 ViHallu Challenge, the first large-scale shared task for detecting hallucinations in Vietnamese LLMs. We present the ViHallu dataset, comprising 10,000 annotated triplets of (context, prompt, response) samples systematically partitioned into three hallucination categories: no hallucination, intrinsic, and extrinsic hallucinations. The dataset incorporates three prompt types--factual, noisy, and adversarial--to stress-test model robustness. A total of 111 teams participated, with the best-performing system achieving a macro-F1 score of 84.80\%, compared to a baseline encoder-only score of 32.83\%, demonstrating that instruction-tuned LLMs with structured prompting and ensemble strategies substantially outperform generic architectures. However, the gap to perfect performance indicates that hallucination detection remains a challenging problem, particularly for intrinsic (contradiction-based) hallucinations. This work establishes a rigorous benchmark and explores a diverse range of detection methodologies, providing a foundation for future research into the trustworthiness and reliability of Vietnamese language AI systems.

View on arXiv
Comments on this paper