ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0810.5655
  4. Cited By
Gibbs posterior for variable selection in high-dimensional
  classification and data mining

Gibbs posterior for variable selection in high-dimensional classification and data mining

31 October 2008
Wenxin Jiang
M. Tanner
ArXiv (abs)PDFHTML

Papers citing "Gibbs posterior for variable selection in high-dimensional classification and data mining"

44 / 44 papers shown
Title
Predictive variational inference: Learn the predictively optimal posterior distribution
Predictive variational inference: Learn the predictively optimal posterior distribution
Jinlin Lai
Yuling Yao
BDL
94
0
0
18 Oct 2024
Temperature Optimization for Bayesian Deep Learning
Temperature Optimization for Bayesian Deep Learning
Kenyon Ng
Chris van der Heide
Liam Hodgkinson
Susan Wei
BDL
121
0
0
08 Oct 2024
Learning with Sparsely Permuted Data: A Robust Bayesian Approach
Learning with Sparsely Permuted Data: A Robust Bayesian Approach
Abhisek Chakraborty
Saptati Datta
68
0
0
16 Sep 2024
Weighted Particle-Based Optimization for Efficient Generalized Posterior
  Calibration
Weighted Particle-Based Optimization for Efficient Generalized Posterior Calibration
Masahiro Tanaka
93
0
0
08 May 2024
Generalized Posterior Calibration via Sequential Monte Carlo Sampler
Generalized Posterior Calibration via Sequential Monte Carlo Sampler
Masahiro Tanaka
100
2
0
25 Apr 2024
ABC-based Forecasting in State Space Models
ABC-based Forecasting in State Space Models
Chaya Weerasinghe
Rubén Loaiza-Maya
G. Martin
David T. Frazier
47
1
0
02 Nov 2023
A Risk Management Perspective on Statistical Estimation and Generalized
  Variational Inference
A Risk Management Perspective on Statistical Estimation and Generalized Variational Inference
Aurya Javeed
D. Kouri
T. Surowiec
80
2
0
26 Oct 2023
Sequential Gibbs Posteriors with Applications to Principal Component
  Analysis
Sequential Gibbs Posteriors with Applications to Principal Component Analysis
Steven Winter
Omar Melikechi
David B. Dunson
74
2
0
19 Oct 2023
Generalized Bayesian Inference for Scientific Simulators via Amortized
  Cost Estimation
Generalized Bayesian Inference for Scientific Simulators via Amortized Cost Estimation
Richard Gao
Michael Deistler
Jakob H. Macke
133
13
0
24 May 2023
Robust probabilistic inference via a constrained transport metric
Robust probabilistic inference via a constrained transport metric
Abhisek Chakraborty
A. Bhattacharya
D. Pati
86
3
0
17 Mar 2023
Semiparametric inference using fractional posteriors
Semiparametric inference using fractional posteriors
Alice L'Huillier
Luke Travis
I. Castillo
Kolyan Ray
74
5
0
19 Jan 2023
Bayesian Multi-task Variable Selection with an Application to
  Differential DAG Analysis
Bayesian Multi-task Variable Selection with an Application to Differential DAG Analysis
Guanxun Li
Quan Zhou
65
1
0
28 Jun 2022
Bayesian Predictive Decision Synthesis
Bayesian Predictive Decision Synthesis
Emily Tallman
M. West
66
22
0
08 Jun 2022
Approximating Bayes in the 21st Century
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
77
26
0
20 Dec 2021
User-friendly introduction to PAC-Bayes bounds
User-friendly introduction to PAC-Bayes bounds
Pierre Alquier
FedML
193
206
0
21 Oct 2021
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Pengzhou (Abel) Wu
Kenji Fukumizu
BDLOODCML
72
3
0
30 Sep 2021
Laplace and Saddlepoint Approximations in High Dimensions
Laplace and Saddlepoint Approximations in High Dimensions
Yanbo Tang
Nancy Reid
75
7
0
22 Jul 2021
Calibrating generalized predictive distributions
Calibrating generalized predictive distributions
Pei-Shien Wu
Ryan Martin
100
8
0
04 Jul 2021
Introducing prior information in Weighted Likelihood Bootstrap with
  applications to model misspecification
Introducing prior information in Weighted Likelihood Bootstrap with applications to model misspecification
E. Pompe
117
9
0
26 Mar 2021
Bayes posterior convergence for loss functions via almost additive
  Thermodynamic Formalism
Bayes posterior convergence for loss functions via almost additive Thermodynamic Formalism
A. Lopes
Silvia R.C. Lopes
P. Varandas
64
7
0
10 Dec 2020
Gibbs posterior concentration rates under sub-exponential type losses
Gibbs posterior concentration rates under sub-exponential type losses
Nicholas Syring
Ryan Martin
122
29
0
08 Dec 2020
A generalized Bayes framework for probabilistic clustering
A generalized Bayes framework for probabilistic clustering
T. Rigon
A. Herring
David B. Dunson
61
27
0
09 Jun 2020
Practical calibration of the temperature parameter in Gibbs posteriors
Practical calibration of the temperature parameter in Gibbs posteriors
Lucie Perrotta
50
3
0
22 Apr 2020
Gibbs posterior inference on multivariate quantiles
Gibbs posterior inference on multivariate quantiles
Indrabati Bhattacharya
Ryan Martin
128
21
0
03 Feb 2020
Bayesian Inference on Volatility in the Presence of Infinite Jump
  Activity and Microstructure Noise
Bayesian Inference on Volatility in the Presence of Infinite Jump Activity and Microstructure Noise
Qi Wang
J. E. Figueroa-López
Todd A. Kuffner
18
2
0
11 Sep 2019
Asymptotic normality, concentration, and coverage of generalized
  posteriors
Asymptotic normality, concentration, and coverage of generalized posteriors
Jeffrey W. Miller
79
68
0
22 Jul 2019
Adaptive Variable Selection for Sequential Prediction in Multivariate
  Dynamic Models
Adaptive Variable Selection for Sequential Prediction in Multivariate Dynamic Models
Isaac Lavine
Michael Lindon
M. West
AI4TS
75
22
0
15 Jun 2019
Gibbs posterior convergence and the thermodynamic formalism
Gibbs posterior convergence and the thermodynamic formalism
K. Mcgoff
S. Mukherjee
A. Nobel
81
10
0
24 Jan 2019
Robust Bayes-Like Estimation: Rho-Bayes estimation
Robust Bayes-Like Estimation: Rho-Bayes estimation
Y. Baraud
Lucien Birgé
59
4
0
22 Nov 2017
$α$-Variational Inference with Statistical Guarantees
ααα-Variational Inference with Statistical Guarantees
Yun Yang
D. Pati
A. Bhattacharya
61
25
0
09 Oct 2017
General Robust Bayes Pseudo-Posterior: Exponential Convergence results
  with Applications
General Robust Bayes Pseudo-Posterior: Exponential Convergence results with Applications
A. Ghosh
Tuhin Majumder
A. Basu
79
8
0
31 Aug 2017
Ensemble Kalman methods for high-dimensional hierarchical dynamic
  space-time models
Ensemble Kalman methods for high-dimensional hierarchical dynamic space-time models
Matthias Katzfuss
Jonathan R. Stroud
C. Wikle
119
69
0
23 Apr 2017
Bayesian fractional posteriors
Bayesian fractional posteriors
A. Bhattacharya
D. Pati
Yun Yang
121
110
0
03 Nov 2016
On the properties of variational approximations of Gibbs posteriors
On the properties of variational approximations of Gibbs posteriors
Pierre Alquier
James Ridgway
Nicolas Chopin
118
256
0
12 Jun 2015
Comment on Article by Dawid and Musio
Comment on Article by Dawid and Musio
Matthias Katzfuss
Anirban Bhattacharya
22
1
0
11 May 2015
Inconsistency of Bayesian Inference for Misspecified Linear Models, and
  a Proposal for Repairing It
Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It
Peter Grünwald
T. V. Ommen
147
268
0
11 Dec 2014
Gaussian Approximation of General Nonparametric Posterior Distributions
Gaussian Approximation of General Nonparametric Posterior Distributions
Zuofeng Shang
Guang Cheng
84
4
0
13 Nov 2014
Empirical Bayes posterior concentration in sparse high-dimensional
  linear models
Empirical Bayes posterior concentration in sparse high-dimensional linear models
Ryan Martin
Raymond Mess
S. Walker
232
104
0
30 Jun 2014
On Oracle Property and Asymptotic Validity of Bayesian Generalized
  Method of Moments
On Oracle Property and Asymptotic Validity of Bayesian Generalized Method of Moments
Cheng Li
Wenxin Jiang
101
15
0
26 May 2014
Learning Subspaces of Different Dimension
Learning Subspaces of Different Dimension
Brian St. Thomas
Lizhen Lin
Lek-Heng Lim
Sayan Mukherjee
54
8
0
27 Apr 2014
A General Framework for Updating Belief Distributions
A General Framework for Updating Belief Distributions
Pier Giovanni Bissiri
Chris Holmes
S. Walker
261
481
0
27 Jun 2013
Asymptotically minimax empirical Bayes estimation of a sparse normal
  mean vector
Asymptotically minimax empirical Bayes estimation of a sparse normal mean vector
Ryan Martin
S. Walker
109
65
0
27 Apr 2013
Quasi-Bayesian analysis of nonparametric instrumental variables models
Quasi-Bayesian analysis of nonparametric instrumental variables models
Kengo Kato
228
40
0
10 Apr 2012
Posterior consistency of nonparametric conditional moment restricted
  models
Posterior consistency of nonparametric conditional moment restricted models
Yuan Liao
Wenxin Jiang
121
33
0
24 May 2011
1