Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
0912.5100
Cited By
Estimation of (near) low-rank matrices with noise and high-dimensional scaling
27 December 2009
S. Negahban
Martin J. Wainwright
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Estimation of (near) low-rank matrices with noise and high-dimensional scaling"
29 / 29 papers shown
Title
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
G. Zhang
S. Fattahi
Richard Y. Zhang
38
34
0
13 Apr 2025
Exploiting Observation Bias to Improve Matrix Completion
Yassir Jedra
Sean Mann
Charlotte Park
Devavrat Shah
33
1
0
03 Jan 2025
On properties of fractional posterior in generalized reduced-rank regression
The Tien Mai
24
1
0
27 Apr 2024
Two-sided Matrix Regression
Nayel Bettache
C. Butucea
23
0
0
08 Mar 2023
Lag selection and estimation of stable parameters for multiple autoregressive processes through convex programming
Somnath Chakraborty
Johannes Lederer
R. Sachs
19
0
0
03 Mar 2023
Quantized Low-Rank Multivariate Regression with Random Dithering
Junren Chen
Yueqi Wang
Michael Kwok-Po Ng
12
4
0
22 Feb 2023
Causal Inference (C-inf) -- closed form worst case typical phase transitions
A. Capponi
M. Stojnic
11
2
0
02 Jan 2023
Robust and Sparse Estimation of Linear Regression Coefficients with Heavy-tailed Noises and Covariates
Takeyuki Sasai
8
4
0
15 Jun 2022
Supervised Dictionary Learning with Auxiliary Covariates
Joo-Hyun Lee
Hanbaek Lyu
W. Yao
14
1
0
14 Jun 2022
Beyond Smoothness: Incorporating Low-Rank Analysis into Nonparametric Density Estimation
Robert A. Vandermeulen
Antoine Ledent
20
7
0
02 Apr 2022
Group-Sparse Matrix Factorization for Transfer Learning of Word Embeddings
Kan Xu
Xuanyi Zhao
Hamsa Bastani
Osbert Bastani
17
6
0
18 Apr 2021
Factor Models for High-Dimensional Tensor Time Series
Rong Chen
Dan Yang
Cun-Hui Zhang
AI4TS
11
90
0
18 May 2019
Tuning parameter selection rules for nuclear norm regularized multivariate linear regression
Pan Shang
Lingchen Kong
11
1
0
19 Jan 2019
Integrative Multi-View Reduced-Rank Regression: Bridging Group-Sparse and Low-Rank Models
Gen Li
Xiaokang Liu
Kun Chen
8
6
0
26 Jul 2018
Foundations of Sequence-to-Sequence Modeling for Time Series
Vitaly Kuznetsov
Zelda E. Mariet
AI4TS
BDL
13
56
0
09 May 2018
Equivalent Lipschitz surrogates for zero-norm and rank optimization problems
Yulan Liu
Shujun Bi
S. Pan
17
29
0
30 Apr 2018
Dynamic matrix recovery from incomplete observations under an exact low-rank constraint
Liangbei Xu
Mark A. Davenport
13
26
0
28 Oct 2016
Dynamic Assortment Personalization in High Dimensions
Nathan Kallus
Madeleine Udell
21
66
0
18 Oct 2016
A Unified Computational and Statistical Framework for Nonconvex Low-Rank Matrix Estimation
Lingxiao Wang
Xiao Zhang
Quanquan Gu
9
80
0
17 Oct 2016
Robust Reduced Rank Regression
Yiyuan She
Kun Chen
6
58
0
14 Sep 2015
Optimal Estimation of Low Rank Density Matrices
V. Koltchinskii
Dong Xia
21
41
0
17 Jul 2015
CUR Algorithm for Partially Observed Matrices
Miao Xu
R. L. Jin
Zhi-Hua Zhou
27
34
0
04 Nov 2014
Individualized Rank Aggregation using Nuclear Norm Regularization
Yu Lu
S. Negahban
19
44
0
03 Oct 2014
Randomized Sketches of Convex Programs with Sharp Guarantees
Mert Pilanci
Martin J. Wainwright
33
175
0
29 Apr 2014
Noisy low-rank matrix completion with general sampling distribution
Olga Klopp
36
203
0
01 Mar 2012
A Dirty Model for Multiple Sparse Regression
A. Jalali
Pradeep Ravikumar
Sujay Sanghavi
51
47
0
29 Jun 2011
Sharp oracle inequalities for the prediction of a high-dimensional matrix
Stéphane Gaïffas
Guillaume Lecué
44
27
0
28 Aug 2010
Reconstruction of a Low-rank Matrix in the Presence of Gaussian Noise
A. Shabalin
A. Nobel
60
161
0
23 Jul 2010
Taking Advantage of Sparsity in Multi-Task Learning
Karim Lounici
Massimiliano Pontil
Alexandre B. Tsybakov
Sara van de Geer
178
292
0
09 Mar 2009
1