ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1007.5510
  4. Cited By
An algorithm for the principal component analysis of large data sets

An algorithm for the principal component analysis of large data sets

30 July 2010
N. Halko
P. Martinsson
Y. Shkolnisky
M. Tygert
ArXivPDFHTML

Papers citing "An algorithm for the principal component analysis of large data sets"

42 / 42 papers shown
Title
Shallow Recurrent Decoder for Reduced Order Modeling of Plasma Dynamics
Shallow Recurrent Decoder for Reduced Order Modeling of Plasma Dynamics
J. Nathan Kutz
M. Reza
Farbod Faraji
A. Knoll
AI4CE
21
9
0
20 May 2024
On the Noise Sensitivity of the Randomized SVD
On the Noise Sensitivity of the Randomized SVD
Elad Romanov
19
0
0
27 May 2023
Deep Learning Methods for Partial Differential Equations and Related
  Parameter Identification Problems
Deep Learning Methods for Partial Differential Equations and Related Parameter Identification Problems
Derick Nganyu Tanyu
Jianfeng Ning
Tom Freudenberg
Nick Heilenkötter
A. Rademacher
U. Iben
Peter Maass
AI4CE
20
34
0
06 Dec 2022
Improved analysis of randomized SVD for top-eigenvector approximation
Improved analysis of randomized SVD for top-eigenvector approximation
Ruo-Chun Tzeng
Po-An Wang
Florian Adriaens
A. Gionis
Chi-Jen Lu
11
1
0
16 Feb 2022
Non-Parametric Estimation of Manifolds from Noisy Data
Non-Parametric Estimation of Manifolds from Noisy Data
Yariv Aizenbud
B. Sober
24
19
0
11 May 2021
Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix
  Factorization
Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix Factorization
Pascal Fernsel
14
5
0
25 Apr 2021
Quantum algorithms for SVD-based data representation and analysis
Quantum algorithms for SVD-based data representation and analysis
Armando Bellante
Alessandro Luongo
S. Zanero
13
8
0
19 Apr 2021
Sparse sketches with small inversion bias
Sparse sketches with small inversion bias
Michal Derezinski
Zhenyu Liao
Edgar Dobriban
Michael W. Mahoney
15
21
0
21 Nov 2020
Generalized Matrix Factorization: efficient algorithms for fitting
  generalized linear latent variable models to large data arrays
Generalized Matrix Factorization: efficient algorithms for fitting generalized linear latent variable models to large data arrays
L. Kidzinski
Francis K. C. Hui
D. Warton
Trevor Hastie
17
11
0
06 Oct 2020
A Perturbation-Based Kernel Approximation Framework
A Perturbation-Based Kernel Approximation Framework
Roy Mitz
Y. Shkolnisky
9
3
0
07 Sep 2020
Data-Driven Aerospace Engineering: Reframing the Industry with Machine
  Learning
Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning
Steven L. Brunton
J. Nathan Kutz
Krithika Manohar
Aleksandr Aravkin
K. Morgansen
...
J. Buttrick
Jeffrey Poskin
Agnes Blom-Schieber
Thomas Hogan
Darren McDonald
AI4CE
10
122
0
24 Aug 2020
How to reduce dimension with PCA and random projections?
How to reduce dimension with PCA and random projections?
Fan Yang
Sifan Liu
Edgar Dobriban
David P. Woodruff
22
28
0
01 May 2020
Error Estimation for Sketched SVD via the Bootstrap
Error Estimation for Sketched SVD via the Bootstrap
Miles E. Lopes
N. Benjamin Erichson
Michael W. Mahoney
6
11
0
10 Mar 2020
Computing rank-revealing factorizations of matrices stored out-of-core
Computing rank-revealing factorizations of matrices stored out-of-core
N. Heavner
P. Martinsson
Gregorio Quintana-Ortí
62
0
0
17 Feb 2020
On-the-fly Global Embeddings Using Random Projections for Extreme
  Multi-label Classification
On-the-fly Global Embeddings Using Random Projections for Extreme Multi-label Classification
Yashaswi Verma
14
0
0
17 Dec 2019
ROIPCA: An online memory-restricted PCA algorithm based on rank-one
  updates
ROIPCA: An online memory-restricted PCA algorithm based on rank-one updates
Roy Mitz
Y. Shkolnisky
9
0
0
25 Nov 2019
Tutorial: Complexity analysis of Singular Value Decomposition and its
  variants
Tutorial: Complexity analysis of Singular Value Decomposition and its variants
Xiaocan Li
Shuo Wang
Yinghao Cai
6
0
0
28 Jun 2019
Identification of synoptic weather types over Taiwan area with multiple
  classifiers
Identification of synoptic weather types over Taiwan area with multiple classifiers
S. Su
Jung‐Lien Chu
Ting-Shuo Yo
Lee-Yaw Lin
12
13
0
21 May 2019
Projecting "better than randomly": How to reduce the dimensionality of
  very large datasets in a way that outperforms random projections
Projecting "better than randomly": How to reduce the dimensionality of very large datasets in a way that outperforms random projections
M. Wojnowicz
Di Zhang
Glenn Chisholm
Xuan Zhao
Matt Wolff
16
11
0
03 Jan 2019
Random Projection in Deep Neural Networks
Random Projection in Deep Neural Networks
P. Wójcik
4
5
0
22 Dec 2018
End-to-end Image Captioning Exploits Multimodal Distributional
  Similarity
End-to-end Image Captioning Exploits Multimodal Distributional Similarity
Pranava Madhyastha
Josiah Wang
Lucia Specia
CoGe
20
7
0
11 Sep 2018
A high-bias, low-variance introduction to Machine Learning for
  physicists
A high-bias, low-variance introduction to Machine Learning for physicists
Pankaj Mehta
Marin Bukov
Ching-Hao Wang
A. G. Day
C. Richardson
Charles K. Fisher
D. Schwab
AI4CE
11
866
0
23 Mar 2018
Diffusion Maps meet Nyström
Diffusion Maps meet Nyström
N. Benjamin Erichson
L. Mathelin
Steven L. Brunton
J. Nathan Kutz
25
4
0
23 Feb 2018
Efficient Algorithms for t-distributed Stochastic Neighborhood Embedding
Efficient Algorithms for t-distributed Stochastic Neighborhood Embedding
G. Linderman
M. Rachh
J. Hoskins
Stefan Steinerberger
Y. Kluger
22
430
0
25 Dec 2017
Lazy stochastic principal component analysis
Lazy stochastic principal component analysis
M. Wojnowicz
Dinh Nguyen
Li Li
Xuan Zhao
25
2
0
21 Sep 2017
Fixed-Rank Approximation of a Positive-Semidefinite Matrix from
  Streaming Data
Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data
J. Tropp
A. Yurtsever
Madeleine Udell
V. Cevher
23
79
0
18 Jun 2017
Spatial Random Sampling: A Structure-Preserving Data Sketching Tool
Spatial Random Sampling: A Structure-Preserving Data Sketching Tool
M. Rahmani
George K. Atia
17
13
0
09 May 2017
Single-Pass PCA of Large High-Dimensional Data
Single-Pass PCA of Large High-Dimensional Data
Wenjian Yu
Yu Gu
Jun Yu Li
Shenghua Liu
Yaohang Li
14
45
0
25 Apr 2017
Integrating multiple random sketches for singular value decomposition
Integrating multiple random sketches for singular value decomposition
Ting-Li Chen
Dawei Chang
Su‐Yun Huang
Hung Chen
Chienyao Lin
Weichung Wang
30
12
0
29 Aug 2016
Randomized Matrix Decompositions using R
Randomized Matrix Decompositions using R
N. Benjamin Erichson
S. Voronin
Steven L. Brunton
J. Nathan Kutz
20
144
0
06 Aug 2016
A Communication Efficient and Scalable Distributed Data Mining for the
  Astronomical Data
A Communication Efficient and Scalable Distributed Data Mining for the Astronomical Data
Aruna Govada
S. K. Sahay
10
3
0
23 Jun 2016
AVEC 2016 - Depression, Mood, and Emotion Recognition Workshop and
  Challenge
AVEC 2016 - Depression, Mood, and Emotion Recognition Workshop and Challenge
M. Valstar
Jonathan Gratch
Bjorn Schuller
F. Ringeval
D. Lalanne
M. Torres
Stefan Scherer
Giota Stratou
R. Cowie
M. Pantic
19
596
0
05 May 2016
Nonparametric Canonical Correlation Analysis
Nonparametric Canonical Correlation Analysis
T. Michaeli
Weiran Wang
Karen Livescu
26
85
0
16 Nov 2015
Large-Scale Approximate Kernel Canonical Correlation Analysis
Large-Scale Approximate Kernel Canonical Correlation Analysis
Weiran Wang
Karen Livescu
19
54
0
15 Nov 2015
Randomized Block Krylov Methods for Stronger and Faster Approximate
  Singular Value Decomposition
Randomized Block Krylov Methods for Stronger and Faster Approximate Singular Value Decomposition
Cameron Musco
Christopher Musco
27
20
0
21 Apr 2015
High Dimensional Low Rank plus Sparse Matrix Decomposition
High Dimensional Low Rank plus Sparse Matrix Decomposition
M. Rahmani
George K. Atia
78
77
0
01 Feb 2015
Large scale canonical correlation analysis with iterative least squares
Large scale canonical correlation analysis with iterative least squares
Y. Lu
Dean Phillips Foster
42
55
0
16 Jul 2014
Fast Ridge Regression with Randomized Principal Component Analysis and
  Gradient Descent
Fast Ridge Regression with Randomized Principal Component Analysis and Gradient Descent
Y. Lu
Dean Phillips Foster
ODL
41
10
0
15 May 2014
Greedy Column Subset Selection for Large-scale Data Sets
Greedy Column Subset Selection for Large-scale Data Sets
Ahmed K. Farahat
Ahmed Elgohary
A. Ghodsi
M. Kamel
48
63
0
24 Dec 2013
Combining Structured and Unstructured Randomness in Large Scale PCA
Combining Structured and Unstructured Randomness in Large Scale PCA
Nikos Karampatziakis
Paul Mineiro
49
2
0
23 Oct 2013
An Image-Based Fluid Surface Pattern Model
An Image-Based Fluid Surface Pattern Model
Mauro de Amorim
R. Fabbri
Lucia Maria dos Santos Pinto
F. D. M. Neto
DiffM
42
0
0
30 Sep 2013
Rotationally Invariant Image Representation for Viewing Direction
  Classification in Cryo-EM
Rotationally Invariant Image Representation for Viewing Direction Classification in Cryo-EM
Zhizhen Zhao
A. Singer
51
117
0
29 Sep 2013
1