Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1010.3866
Cited By
Optimal rates of convergence for covariance matrix estimation
19 October 2010
Tommaso Cai
Cun-Hui Zhang
Harrison H. Zhou
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimal rates of convergence for covariance matrix estimation"
50 / 69 papers shown
Title
High-dimensional Clustering and Signal Recovery under Block Signals
Wu Su
Yumou Qiu
22
0
0
11 Apr 2025
Optimal Estimation of Structured Covariance Operators
Omar Al Ghattas
Jiaheng Chen
D. Sanz-Alonso
Nathan Waniorek
21
3
0
04 Aug 2024
Growing Tiny Networks: Spotting Expressivity Bottlenecks and Fixing Them Optimally
Manon Verbockhaven
Sylvain Chevallier
Guillaume Charpiat
25
4
0
30 May 2024
Distributed High-Dimensional Quantile Regression: Estimation Efficiency and Support Recovery
Caixing Wang
Ziliang Shen
19
0
0
13 May 2024
Hoeffding's inequality for continuous-time Markov chains
Jinpeng Liu
Yuanyuan Liu
Lin Zhou
13
0
0
23 Apr 2024
High-Dimensional Statistics
Philippe Rigollet
Jan-Christian Hütter
6
0
0
30 Oct 2023
Sharper dimension-free bounds on the Frobenius distance between sample covariance and its expectation
Nikita Puchkin
Fedor Noskov
V. Spokoiny
OT
14
6
0
28 Aug 2023
Learning Networks from Gaussian Graphical Models and Gaussian Free Fields
Subhro Ghosh
Soumendu Sundar Mukherjee
Hoang-Son Tran
Ujan Gangopadhyay
17
0
0
04 Aug 2023
Tuning-free one-bit covariance estimation using data-driven dithering
S. Dirksen
J. Maly
18
7
0
24 Jul 2023
Quantizing Heavy-tailed Data in Statistical Estimation: (Near) Minimax Rates, Covariate Quantization, and Uniform Recovery
Junren Chen
Michael Kwok-Po Ng
Di Wang
MQ
13
12
0
30 Dec 2022
Projection inference for high-dimensional covariance matrices with structured shrinkage targets
Fabian Mies
A. Steland
16
2
0
04 Nov 2022
Dimension-free Bounds for Sum of Dependent Matrices and Operators with Heavy-Tailed Distribution
Shogo H. Nakakita
Pierre Alquier
Masaaki Imaizumi
16
2
0
18 Oct 2022
Distributed Estimation and Inference for Semi-parametric Binary Response Models
X. Chen
Wenbo Jing
Weidong Liu
Yichen Zhang
13
2
0
15 Oct 2022
Improved Rates of Bootstrap Approximation for the Operator Norm: A Coordinate-Free Approach
Miles E. Lopes
4
3
0
05 Aug 2022
Noise Covariance Estimation in Multi-Task High-dimensional Linear Models
Kai Tan
Gabriel Romon
Pierre C. Bellec
11
4
0
15 Jun 2022
Covariance Estimation: Optimal Dimension-free Guarantees for Adversarial Corruption and Heavy Tails
Pedro Abdalla
Nikita Zhivotovskiy
17
25
0
17 May 2022
A zero-estimator approach for estimating the signal level in a high-dimensional model-free setting
Ilan Livne
David Azriel
Y. Goldberg
9
0
0
11 May 2022
An efficient GPU-Parallel Coordinate Descent Algorithm for Sparse Precision Matrix Estimation via Scaled Lasso
Seunghwan Lee
Sang Cheol Kim
Donghyeon Yu
7
0
0
28 Mar 2022
ISDE : Independence Structure Density Estimation
L. Pujol
17
1
0
18 Mar 2022
Dimensionality Reduction and Wasserstein Stability for Kernel Regression
Stephan Eckstein
Armin Iske
Mathias Trabs
6
4
0
17 Mar 2022
Side Effects of Learning from Low-dimensional Data Embedded in a Euclidean Space
Juncai He
R. Tsai
Rachel A. Ward
28
8
0
01 Mar 2022
High Dimensional Statistical Estimation under Uniformly Dithered One-bit Quantization
Junren Chen
Cheng-Long Wang
Michael Kwok-Po Ng
Di Wang
MQ
19
17
0
26 Feb 2022
Unlabeled Data Help: Minimax Analysis and Adversarial Robustness
Yue Xing
Qifan Song
Guang Cheng
14
4
0
14 Feb 2022
Optimal Variable Clustering for High-Dimensional Matrix Valued Data
Inbeom Lee
Siyi Deng
Y. Ning
14
1
0
24 Dec 2021
Coherence of high-dimensional random matrices in a Gaussian case : application of the Chen-Stein method
M. Boucher
D. Chauveau
M. Zani
6
0
0
13 Oct 2021
Affine-Invariant Integrated Rank-Weighted Depth: Definition, Properties and Finite Sample Analysis
Guillaume Staerman
Pavlo Mozharovskyi
Stéphan Clémençon
11
10
0
21 Jun 2021
Self-Supervised Metric Learning in Multi-View Data: A Downstream Task Perspective
Shulei Wang
SSL
17
3
0
14 Jun 2021
New challenges in covariance estimation: multiple structures and coarse quantization
J. Maly
Tianyu Yang
S. Dirksen
Holger Rauhut
Giuseppe Caire
8
3
0
11 Jun 2021
Covariance estimation under one-bit quantization
S. Dirksen
J. Maly
Holger Rauhut
MQ
11
20
0
02 Apr 2021
Estimation of Conditional Mean Operator under the Bandable Covariance Structure
Kwangmin Lee
Kyoungjae Lee
Jaeyong Lee
11
2
0
11 Mar 2021
Robust W-GAN-Based Estimation Under Wasserstein Contamination
Zheng Liu
Po-Ling Loh
11
5
0
20 Jan 2021
Adversarially Robust Estimate and Risk Analysis in Linear Regression
Yue Xing
Ruizhi Zhang
Guang Cheng
AAML
12
26
0
18 Dec 2020
Limiting laws and consistent estimation criteria for fixed and diverging number of spiked eigenvalues
Jian-bo Hu
Jingfei Zhang
Jianhua Guo
Ji Zhu
21
1
0
15 Dec 2020
Post-Processed Posteriors for Banded Covariances
Kwangmin Lee
Kyoungjae Lee
Jaeyong Lee
18
5
0
25 Nov 2020
On the Non-Asymptotic Concentration of Heteroskedastic Wishart-type Matrix
T. Tony Cai
Rungang Han
Anru R. Zhang
34
15
0
28 Aug 2020
Robust Gaussian Covariance Estimation in Nearly-Matrix Multiplication Time
J. Li
Guanghao Ye
8
12
0
23 Jun 2020
Bootstrapping
ℓ
p
\ell_p
ℓ
p
-Statistics in High Dimensions
Alexander Giessing
Jianqing Fan
12
4
0
23 Jun 2020
Covariance Estimation for Matrix-valued Data
Yichi Zhang
Weining Shen
Dehan Kong
8
11
0
11 Apr 2020
A Rigorous Theory of Conditional Mean Embeddings
I. Klebanov
Ingmar Schuster
T. Sullivan
14
39
0
02 Dec 2019
Error bound of critical points and KL property of exponent
1
/
2
1/2
1/2
for squared F-norm regularized factorization
Ting Tao
S. Pan
Shujun Bi
8
4
0
11 Nov 2019
Matrix Means and a Novel High-Dimensional Shrinkage Phenomenon
A. Lodhia
Keith D. Levin
Elizaveta Levina
16
3
0
16 Oct 2019
Bootstrapping the Operator Norm in High Dimensions: Error Estimation for Covariance Matrices and Sketching
Miles E. Lopes
N. Benjamin Erichson
Michael W. Mahoney
11
13
0
13 Sep 2019
Optimal estimation of functionals of high-dimensional mean and covariance matrix
Jianqing Fan
Haolei Weng
Yifeng Zhou
19
7
0
20 Aug 2019
Method of Contraction-Expansion (MOCE) for Simultaneous Inference in Linear Models
Fei-Yue Wang
Ling Zhou
Lu Tang
P. Song
16
4
0
04 Aug 2019
Faster Algorithms for High-Dimensional Robust Covariance Estimation
Yu Cheng
Ilias Diakonikolas
Rong Ge
David P. Woodruff
11
65
0
11 Jun 2019
Integrated conditional moment test and beyond: when the number of covariates is divergent
Falong Tan
Lixing Zhu
11
7
0
20 May 2019
LR-GLM: High-Dimensional Bayesian Inference Using Low-Rank Data Approximations
Brian L. Trippe
Jonathan H. Huggins
Raj Agrawal
Tamara Broderick
BDL
12
9
0
17 May 2019
General framework for projection structures
E. Belitser
N. Nurushev
23
1
0
31 Mar 2019
Affine Invariant Covariance Estimation for Heavy-Tailed Distributions
Dmitrii Ostrovskii
Alessandro Rudi
19
10
0
08 Feb 2019
Central limit theorem for linear spectral statistics of general separable sample covariance matrices with applications
Huiqin Li
Yanqing Yin
Shu-rong Zheng
15
4
0
23 Jan 2019
1
2
Next