ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1012.1086
  4. Cited By
Two Proposals for Robust PCA using Semidefinite Programming
v1v2v3 (latest)

Two Proposals for Robust PCA using Semidefinite Programming

6 December 2010
Michael B. McCoy
J. Tropp
ArXiv (abs)PDFHTML

Papers citing "Two Proposals for Robust PCA using Semidefinite Programming"

34 / 34 papers shown
Title
T-Rex: Fitting a Robust Factor Model via Expectation-Maximization
T-Rex: Fitting a Robust Factor Model via Expectation-Maximization
Daniel Cederberg
79
0
0
17 May 2025
Synthetic Principal Component Design: Fast Covariate Balancing with
  Synthetic Controls
Synthetic Principal Component Design: Fast Covariate Balancing with Synthetic Controls
Yiping Lu
Jiajin Li
Lexing Ying
Jose H. Blanchet
47
2
0
28 Nov 2022
Robust Singular Values based on L1-norm PCA
Robust Singular Values based on L1-norm PCA
D. Le
P. Markopoulos
44
0
0
21 Oct 2022
Adaptive and Robust Multi-Task Learning
Adaptive and Robust Multi-Task Learning
Yaqi Duan
Kaizheng Wang
128
27
0
10 Feb 2022
Closed-Form, Provable, and Robust PCA via Leverage Statistics and
  Innovation Search
Closed-Form, Provable, and Robust PCA via Leverage Statistics and Innovation Search
M. Rahmani
Ping Li
46
5
0
23 Jun 2021
Outlier-robust sparse/low-rank least-squares regression and robust
  matrix completion
Outlier-robust sparse/low-rank least-squares regression and robust matrix completion
Philip Thompson
74
9
0
12 Dec 2020
Factor Analysis of Mixed Data for Anomaly Detection
Factor Analysis of Mixed Data for Anomaly Detection
Matthew Davidow
David S. Matteson
22
10
0
25 May 2020
Outlier Detection and Data Clustering via Innovation Search
Outlier Detection and Data Clustering via Innovation Search
M. Rahmani
P. Li
73
3
0
30 Dec 2019
RES-PCA: A Scalable Approach to Recovering Low-rank Matrices
RES-PCA: A Scalable Approach to Recovering Low-rank Matrices
Chong Peng
Chenglizhao Chen
Zhao Kang
Jianbo Li
Q. Cheng
109
25
0
16 Apr 2019
Robust Subspace Recovery with Adversarial Outliers
Robust Subspace Recovery with Adversarial Outliers
Tyler Maunu
Gilad Lerman
54
19
0
05 Apr 2019
Robust Subspace Recovery Layer for Unsupervised Anomaly Detection
Robust Subspace Recovery Layer for Unsupervised Anomaly Detection
Chieh-Hsin Lai
Dongmian Zou
Gilad Lerman
UQCV
57
62
0
30 Mar 2019
An Overview of Robust Subspace Recovery
An Overview of Robust Subspace Recovery
Gilad Lerman
Tyler Maunu
84
131
0
02 Mar 2018
Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and
  Robust Subspace Recovery
Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery
Namrata Vaswani
T. Bouwmans
S. Javed
Praneeth Narayanamurthy
OOD
96
278
0
26 Nov 2017
A Simple and Fast Algorithm for L1-norm Kernel PCA
A Simple and Fast Algorithm for L1-norm Kernel PCA
Cheolmin Kim
Diego Klabjan
140
18
0
28 Sep 2017
A Well-Tempered Landscape for Non-convex Robust Subspace Recovery
A Well-Tempered Landscape for Non-convex Robust Subspace Recovery
Tyler Maunu
Teng Zhang
Gilad Lerman
75
63
0
13 Jun 2017
Provable Self-Representation Based Outlier Detection in a Union of
  Subspaces
Provable Self-Representation Based Outlier Detection in a Union of Subspaces
Chong You
Daniel P. Robinson
René Vidal
98
115
0
12 Apr 2017
Efficient L1-Norm Principal-Component Analysis via Bit Flipping
Efficient L1-Norm Principal-Component Analysis via Bit Flipping
Panos P. Markopoulos
S. Kundu
Shubham Chamadia
D. Pados
67
125
0
06 Oct 2016
A Fast Factorization-based Approach to Robust PCA
A Fast Factorization-based Approach to Robust PCA
Chong Peng
Zhao Kang
Q. Cheng
54
12
0
27 Sep 2016
Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis
Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis
M. Rahmani
George Atia
101
135
0
15 Sep 2016
Iteratively Reweighted Least Squares Algorithms for L1-Norm Principal
  Component Analysis
Iteratively Reweighted Least Squares Algorithms for L1-Norm Principal Component Analysis
Young Woong Park
Diego Klabjan
57
24
0
10 Sep 2016
Agnostic Estimation of Mean and Covariance
Agnostic Estimation of Mean and Covariance
Kevin A. Lai
Anup B. Rao
Santosh Vempala
98
348
0
24 Apr 2016
Robust PCA via Nonconvex Rank Approximation
Robust PCA via Nonconvex Rank Approximation
Zhao Kang
Chong Peng
Q. Cheng
66
162
0
17 Nov 2015
A Riemannian low-rank method for optimization over semidefinite matrices
  with block-diagonal constraints
A Riemannian low-rank method for optimization over semidefinite matrices with block-diagonal constraints
Nicolas Boumal
91
68
0
01 Jun 2015
High Dimensional Low Rank plus Sparse Matrix Decomposition
High Dimensional Low Rank plus Sparse Matrix Decomposition
M. Rahmani
George Atia
154
78
0
01 Feb 2015
Relations among Some Low Rank Subspace Recovery Models
Relations among Some Low Rank Subspace Recovery Models
Hongyang R. Zhang
Zhouchen Lin
Chao Zhang
Junbin Gao
77
29
0
06 Dec 2014
Identifying Outliers in Large Matrices via Randomized Adaptive
  Compressive Sampling
Identifying Outliers in Large Matrices via Randomized Adaptive Compressive Sampling
Xingguo Li
Jarvis Haupt
103
59
0
01 Jul 2014
Fast, Robust and Non-convex Subspace Recovery
Fast, Robust and Non-convex Subspace Recovery
Gilad Lerman
Tyler Maunu
119
78
0
24 Jun 2014
Robust subspace recovery by Tyler's M-estimator
Robust subspace recovery by Tyler's M-estimator
Teng Zhang
130
28
0
07 Jun 2012
Robust computation of linear models by convex relaxation
Robust computation of linear models by convex relaxation
Gilad Lerman
Michael B. McCoy
J. Tropp
Teng Zhang
175
161
0
18 Feb 2012
A Novel M-Estimator for Robust PCA
A Novel M-Estimator for Robust PCA
Teng Zhang
Gilad Lerman
122
133
0
20 Dec 2011
Noisy matrix decomposition via convex relaxation: Optimal rates in high
  dimensions
Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions
Alekh Agarwal
S. Negahban
Martin J. Wainwright
248
433
0
23 Feb 2011
Matrix completion with column manipulation: Near-optimal
  sample-robustness-rank tradeoffs
Matrix completion with column manipulation: Near-optimal sample-robustness-rank tradeoffs
Yudong Chen
Huan Xu
Constantine Caramanis
Sujay Sanghavi
104
30
0
10 Feb 2011
Robust PCA via Outlier Pursuit
Robust PCA via Outlier Pursuit
Huan Xu
Constantine Caramanis
Sujay Sanghavi
122
768
0
20 Oct 2010
A Unified Framework for High-Dimensional Analysis of M-Estimators with
  Decomposable Regularizers
A Unified Framework for High-Dimensional Analysis of M-Estimators with Decomposable Regularizers
S. Negahban
Pradeep Ravikumar
Martin J. Wainwright
Bin Yu
504
1,379
0
13 Oct 2010
1