Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1101.0955
Cited By
Approximate Bayesian Computational methods
5 January 2011
Jean-Michel Marin
Pierre Pudlo
Christian P. Robert
Robin J. Ryder
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Approximate Bayesian Computational methods"
50 / 254 papers shown
Title
Simulation-based inference for stochastic nonlinear mixed-effects models with applications in systems biology
Henrik Häggström
Sebastian Persson
Marija Cvijovic
Umberto Picchini
19
0
0
15 Apr 2025
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
58
9
0
17 Feb 2025
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
Yifei Xiong
Xiliang Yang
Sanguo Zhang
Zhijian He
108
2
0
17 Jan 2025
Discovering governing equation in structural dynamics from acceleration-only measurements
Calvin Alvares
Souvik Chakraborty
17
0
0
18 Jul 2024
Bayesian Structural Model Updating with Multimodal Variational Autoencoder
Tatsuya Itoi
Kazuho Amishiki
Sangwon Lee
T. Yaoyama
21
6
0
07 Jun 2024
Inference for the stochastic FitzHugh-Nagumo model from real action potential data via approximate Bayesian computation
Adeline Samson
M. Tamborrino
I. Tubikanec
19
2
0
28 May 2024
Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs
Sanmitra Ghosh
Paul J. Birrell
Daniela De Angelis
35
1
0
02 May 2024
Using early rejection Markov chain Monte Carlo and Gaussian processes to accelerate ABC methods
Xuefei Cao
Shijia Wang
Yongdao Zhou
28
3
0
13 Apr 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
49
5
0
08 Apr 2024
Copula Approximate Bayesian Computation Using Distribution Random Forests
G. Karabatsos
27
1
0
28 Feb 2024
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
Xiliang Yang
Yifei Xiong
Zhijian He
14
0
0
30 Jan 2024
A bivariate two-state Markov modulated Poisson process for failure modelling
Yoel G. Yera
R. Lillo
B. F. Nielsen
Pepa Ramírez-Cobo
Fabrizio Ruggeri
14
9
0
26 Jan 2024
Particle Gibbs for Likelihood-Free Inference of State Space Models with Application to Stochastic Volatility
Zhaoran Hou
Samuel W.K. Wong
11
0
0
20 Dec 2023
Fuse It or Lose It: Deep Fusion for Multimodal Simulation-Based Inference
Marvin Schmitt
Stefan T. Radev
Paul-Christian Burkner
40
5
0
17 Nov 2023
Fine-Tuning Generative Models as an Inference Method for Robotic Tasks
Orr Krupnik
Elisei Shafer
Tom Jurgenson
Aviv Tamar
27
4
0
19 Oct 2023
Sensitivity-Aware Amortized Bayesian Inference
Lasse Elsemüller
Hans Olischläger
Marvin Schmitt
Paul-Christian Burkner
Ullrich Kothe
Stefan T. Radev
13
7
0
17 Oct 2023
An Introduction to the Calibration of Computer Models
Richard D. Wilkinson
Christopher W. Lanyon
11
0
0
13 Oct 2023
An Extendable Python Implementation of Robust Optimisation Monte Carlo
Vasilis Gkolemis
Michael U. Gutmann
Henri Pesonen
6
1
0
19 Sep 2023
Diffusion Schrödinger Bridges for Bayesian Computation
J. Heng
Valentin De Bortoli
Arnaud Doucet
DiffM
20
3
0
27 Aug 2023
Bayesian Synthetic Likelihood
David T. Frazier
Christopher C. Drovandi
David J. Nott
20
216
0
09 May 2023
Reliable Gradient-free and Likelihood-free Prompt Tuning
Maohao Shen
S. Ghosh
P. Sattigeri
Subhro Das
Yuheng Bu
G. Wornell
VLM
44
10
0
30 Apr 2023
Importance is Important: A Guide to Informed Importance Tempering Methods
Guanxun Li
Aaron Smith
Quan Zhou
11
2
0
13 Apr 2023
Correcting Model Misspecification via Generative Adversarial Networks
Pronoma Banerjee
Manasi V Gude
Rajvi J Sampat
Sharvari M Hedaoo
S. Dhavala
Snehanshu Saha
11
0
0
07 Apr 2023
Graph-informed simulation-based inference for models of active matter
Namid R Stillman
S. Henkes
R. Mayor
Gilles Louppe
11
1
0
05 Apr 2023
Simulation-based Bayesian inference for robotic grasping
Norman Marlier
O. Bruls
Gilles Louppe
11
4
0
10 Mar 2023
Online simulator-based experimental design for cognitive model selection
Alexander Aushev
Aini Putkonen
Grégoire Clarté
Suyog H. Chandramouli
Luigi Acerbi
Samuel Kaski
Andrew Howes
17
2
0
03 Mar 2023
JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models
Stefan T. Radev
Marvin Schmitt
Valentin Pratz
Umberto Picchini
Ullrich Kothe
Paul-Christian Burkner
BDL
12
26
0
17 Feb 2023
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
31
12
0
27 Jan 2023
Better Together: pooling information in likelihood-free inference
David T. Frazier
Christopher C. Drovandi
David J. Nott
14
1
0
05 Dec 2022
Maximum Likelihood Learning of Unnormalized Models for Simulation-Based Inference
Pierre Glaser
Michael Arbel
Samo Hromadka
Arnaud Doucet
A. Gretton
12
2
0
26 Oct 2022
A Geometric Perspective on Bayesian and Generalized Fiducial Inference
Yang Liu
Jan Hannig
Alexander C. Murph
29
0
0
11 Oct 2022
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
20
15
0
01 Aug 2022
Bayesian model calibration for block copolymer self-assembly: Likelihood-free inference and expected information gain computation via measure transport
Ricardo Baptista
Lianghao Cao
Joshua Chen
Omar Ghattas
Fengyi Li
Youssef M. Marzouk
J. Oden
11
11
0
22 Jun 2022
Generalised Bayesian Inference for Discrete Intractable Likelihood
Takuo Matsubara
Jeremias Knoblauch
F. Briol
Chris J. Oates
15
14
0
16 Jun 2022
Concentration of discrepancy-based approximate Bayesian computation via Rademacher complexity
Sirio Legramanti
Daniele Durante
Pierre Alquier
26
6
0
14 Jun 2022
Approximate confidence distribution computing
S. Thornton
Wentao Li
Min‐ge Xie
17
4
0
03 Jun 2022
Probabilistic learning constrained by realizations using a weak formulation of Fourier transform of probability measures
Christian Soize
6
5
0
06 May 2022
On predictive inference for intractable models via approximate Bayesian computation
Marko Jarvenpaa
J. Corander
TPM
12
2
0
23 Mar 2022
Bayesian inference in Epidemics: linear noise analysis
S. Bronstein
Stefan Engblom
R. Marin
9
0
0
21 Mar 2022
Amortised Likelihood-free Inference for Expensive Time-series Simulators with Signatured Ratio Estimation
Joel Dyer
Patrick W Cannon
Sebastian M. Schmon
8
9
0
23 Feb 2022
Mixed Effects Neural ODE: A Variational Approximation for Analyzing the Dynamics of Panel Data
Jurijs Nazarovs
Rudrasis Chakraborty
Songwong Tasneeyapant
Sathya Ravi
Vikas Singh
7
4
0
18 Feb 2022
Probabilistic learning inference of boundary value problem with uncertainties based on Kullback-Leibler divergence under implicit constraints
Christian Soize
9
5
0
10 Feb 2022
Approximate Bayesian Computation with Domain Expert in the Loop
Ayush Bharti
Louis Filstroff
Samuel Kaski
TPM
22
7
0
28 Jan 2022
Learning Summary Statistics for Bayesian Inference with Autoencoders
Carlo Albert
S. Ulzega
Firat Ozdemir
F. Pérez-Cruz
Antonietta Mira
BDL
25
10
0
28 Jan 2022
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
19
25
0
20 Dec 2021
Unifying Likelihood-free Inference with Black-box Optimization and Beyond
Dinghuai Zhang
Jie Fu
Yoshua Bengio
Aaron Courville
24
13
0
06 Oct 2021
Simulation-based Bayesian inference for multi-fingered robotic grasping
Norman Marlier
O. Bruls
Gilles Louppe
24
6
0
29 Sep 2021
A Survey of Monte Carlo Methods for Parameter Estimation
D. Luengo
Luca Martino
M. Bugallo
Victor Elvira
S. Särkkä
6
153
0
25 Jul 2021
Likelihood-Free Frequentist Inference: Bridging Classical Statistics and Machine Learning for Reliable Simulator-Based Inference
Niccolò Dalmasso
Luca Masserano
David Y. Zhao
Rafael Izbicki
Ann B. Lee
16
5
0
08 Jul 2021
Approximate Bayesian Computation with Path Signatures
Joel Dyer
Patrick W Cannon
Sebastian M. Schmon
11
15
0
23 Jun 2021
1
2
3
4
5
6
Next