ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1110.5667
  4. Cited By
Inducing Probabilistic Programs by Bayesian Program Merging

Inducing Probabilistic Programs by Bayesian Program Merging

25 October 2011
Irvin Hwang
Andreas Stuhlmuller
Noah D. Goodman
ArXiv (abs)PDFHTML

Papers citing "Inducing Probabilistic Programs by Bayesian Program Merging"

16 / 16 papers shown
Title
Learning to Infer Generative Template Programs for Visual Concepts
Learning to Infer Generative Template Programs for Visual Concepts
R. K. Jones
S. Chaudhuri
Daniel E. Ritchie
NAIBDL
77
2
0
20 Mar 2024
Efficient Incremental Belief Updates Using Weighted Virtual Observations
Efficient Incremental Belief Updates Using Weighted Virtual Observations
David Tolpin
45
0
0
10 Feb 2024
ShapeCoder: Discovering Abstractions for Visual Programs from
  Unstructured Primitives
ShapeCoder: Discovering Abstractions for Visual Programs from Unstructured Primitives
R. K. Jones
Paul Guerrero
Niloy J. Mitra
Daniel E. Ritchie
75
25
0
09 May 2023
Meta-Learned Models of Cognition
Meta-Learned Models of Cognition
Marcel Binz
Ishita Dasgupta
Akshay K. Jagadish
M. Botvinick
Jane X. Wang
Eric Schulz
94
27
0
12 Apr 2023
Bayesian Decision Trees via Tractable Priors and Probabilistic
  Context-Free Grammars
Bayesian Decision Trees via Tractable Priors and Probabilistic Context-Free Grammars
Colin D. Sullivan
Mo Tiwari
Sebastian Thrun
Chris Piech
TPM
73
0
0
15 Feb 2023
Top-Down Synthesis for Library Learning
Top-Down Synthesis for Library Learning
Matthew Bowers
Theo X. Olausson
Catherine Wong
Gabriel Grand
J. Tenenbaum
Kevin Ellis
Armando Solar-Lezama
DiffM
53
63
0
29 Nov 2022
How To Train Your Program: a Probabilistic Programming Pattern for
  Bayesian Learning From Data
How To Train Your Program: a Probabilistic Programming Pattern for Bayesian Learning From Data
David Tolpin
51
0
0
08 May 2021
ShapeMOD: Macro Operation Discovery for 3D Shape Programs
ShapeMOD: Macro Operation Discovery for 3D Shape Programs
R. K. Jones
David Charatan
Paul Guerrero
Niloy J. Mitra
Daniel E. Ritchie
69
9
0
13 Apr 2021
ShapeAssembly: Learning to Generate Programs for 3D Shape Structure
  Synthesis
ShapeAssembly: Learning to Generate Programs for 3D Shape Structure Synthesis
R. K. Jones
Theresa Barton
Xianghao Xu
Kai Wang
Ellen Jiang
Paul Guerrero
Niloy J. Mitra
Daniel E. Ritchie
126
32
0
17 Sep 2020
SketchGraphs: A Large-Scale Dataset for Modeling Relational Geometry in
  Computer-Aided Design
SketchGraphs: A Large-Scale Dataset for Modeling Relational Geometry in Computer-Aided Design
Ari Seff
Yaniv Ovadia
Wenda Zhou
Ryan P. Adams
AI4CE3DV
87
69
0
16 Jul 2020
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
Feras A. Saad
Marco F. Cusumano-Towner
Ulrich Schaechtle
Martin Rinard
Vikash K. Mansinghka
58
62
0
14 Jul 2019
Learning Neurosymbolic Generative Models via Program Synthesis
Learning Neurosymbolic Generative Models via Program Synthesis
Halley Young
Osbert Bastani
Mayur Naik
NAI
62
31
0
24 Jan 2019
Inference Over Programs That Make Predictions
Inference Over Programs That Make Predictions
Yura N. Perov
35
2
0
02 Oct 2018
An Introduction to Probabilistic Programming
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
88
200
0
27 Sep 2018
Bachelor's thesis on generative probabilistic programming (in Russian
  language, June 2014)
Bachelor's thesis on generative probabilistic programming (in Russian language, June 2014)
Yura N. Perov
BDL
20
0
0
26 Jan 2016
Learning Probabilistic Programs
Learning Probabilistic Programs
Yura N. Perov
Frank Wood
TPM
70
15
0
09 Jul 2014
1