ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1111.7077
  4. Cited By
Strictly and non-strictly positive definite functions on spheres
v1v2v3v4v5 (latest)

Strictly and non-strictly positive definite functions on spheres

30 November 2011
T. Gneiting
ArXiv (abs)PDFHTML

Papers citing "Strictly and non-strictly positive definite functions on spheres"

50 / 60 papers shown
Title
On the Saturation Effects of Spectral Algorithms in Large Dimensions
Weihao Lu
Haobo Zhang
Yicheng Li
Q. Lin
105
2
0
01 Mar 2025
Gaussian Differentially Private Human Faces Under a Face Radial Curve Representation
Gaussian Differentially Private Human Faces Under a Face Radial Curve Representation
Carlos Soto
M. Reimherr
Aleksandra B. Slavkovic
Mark Shriver
CVBM
93
1
0
10 Sep 2024
On the Pinsker bound of inner product kernel regression in large dimensions
On the Pinsker bound of inner product kernel regression in large dimensions
Weihao Lu
Jialin Ding
Haobo Zhang
Qian Lin
93
1
0
02 Sep 2024
Matern Correlation: A Panoramic Primer
Matern Correlation: A Panoramic Primer
Xiaoqing Chen
16
0
0
17 Apr 2024
Smoothness Estimation for Whittle-Matérn Processes on Closed
  Riemannian Manifolds
Smoothness Estimation for Whittle-Matérn Processes on Closed Riemannian Manifolds
Moritz Korte-Stapff
Toni Karvonen
Eric Moulines
52
0
0
31 Dec 2023
Implicit Manifold Gaussian Process Regression
Implicit Manifold Gaussian Process Regression
Bernardo Fichera
Viacheslav Borovitskiy
Andreas Krause
A. Billard
50
4
0
30 Oct 2023
Wide Neural Networks as Gaussian Processes: Lessons from Deep
  Equilibrium Models
Wide Neural Networks as Gaussian Processes: Lessons from Deep Equilibrium Models
Tianxiang Gao
Xiaokai Huo
Hailiang Liu
Hongyang Gao
BDL
84
8
0
16 Oct 2023
Toward Mesh-Invariant 3D Generative Deep Learning with Geometric
  Measures
Toward Mesh-Invariant 3D Generative Deep Learning with Geometric Measures
T. Besnier
Sylvain Arguillere
E. Pierson
Mohamed Daoudi
3DH
77
9
0
27 Jun 2023
Mind the spikes: Benign overfitting of kernels and neural networks in
  fixed dimension
Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension
Moritz Haas
David Holzmüller
U. V. Luxburg
Ingo Steinwart
MLT
100
14
0
23 May 2023
A Spatially Correlated Competing Risks Time-to-Event Model for
  Supercomputer GPU Failure Data
A Spatially Correlated Competing Risks Time-to-Event Model for Supercomputer GPU Failure Data
Jie Min
Yili Hong
W. Meeker
G. Ostrouchov
60
2
0
29 Mar 2023
Gaussian kernels on non-simply-connected closed Riemannian manifolds are
  never positive definite
Gaussian kernels on non-simply-connected closed Riemannian manifolds are never positive definite
Siran Li
55
3
0
12 Mar 2023
The Matérn Model: A Journey through Statistics, Numerical Analysis and
  Machine Learning
The Matérn Model: A Journey through Statistics, Numerical Analysis and Machine Learning
Emilio Porcu
M. Bevilacqua
R. Schaback
Chris J. Oates
63
16
0
05 Mar 2023
The Gaussian kernel on the circle and spaces that admit isometric
  embeddings of the circle
The Gaussian kernel on the circle and spaces that admit isometric embeddings of the circle
Nathael Da Costa
Cyrus Mostajeran
Juan-Pablo Ortega
BDL
59
4
0
21 Feb 2023
Strictly positive definite kernels on compact Riemannian manifolds
Strictly positive definite kernels on compact Riemannian manifolds
J. Guella
Janin Jäger
22
0
0
19 Jan 2023
Cox processes driven by transformed Gaussian processes on linear
  networks -- A review and new contributions
Cox processes driven by transformed Gaussian processes on linear networks -- A review and new contributions
Jesper Møller
J. Rasmussen
53
7
0
16 Dec 2022
Asymptotics for isotropic Hilbert-valued spherical random fields
Asymptotics for isotropic Hilbert-valued spherical random fields
Alessia Caponera
27
0
0
05 Dec 2022
Sobolev Spaces, Kernels and Discrepancies over Hyperspheres
Sobolev Spaces, Kernels and Discrepancies over Hyperspheres
S. Hubbert
Emilio Porcu
Chris J. Oates
Mark Girolami
63
4
0
16 Nov 2022
Optimization on Manifolds via Graph Gaussian Processes
Optimization on Manifolds via Graph Gaussian Processes
Hwanwoo Kim
D. Sanz-Alonso
Ruiyi Yang
92
2
0
20 Oct 2022
An asymptotic study of the joint maximum likelihood estimation of the
  regularity and the amplitude parameters of a Mat{é}rn model on the circle
An asymptotic study of the joint maximum likelihood estimation of the regularity and the amplitude parameters of a Mat{é}rn model on the circle
S. Petit
83
1
0
16 Sep 2022
Geostatistics for large datasets on Riemannian manifolds: a matrix-free
  approach
Geostatistics for large datasets on Riemannian manifolds: a matrix-free approach
M. Pereira
N. Desassis
D. Allard
36
10
0
26 Aug 2022
The periodic zeta covariance function for Gaussian process regression
The periodic zeta covariance function for Gaussian process regression
Giacomo Petrillo
46
0
0
04 Aug 2022
The Circular Matern Covariance Function and its Link to Markov Random
  Fields on the Circle
The Circular Matern Covariance Function and its Link to Markov Random Fields on the Circle
Chun-Chia Huang
Ao Li
18
1
0
30 Jan 2022
Fast characterization of inducible regions of atrial fibrillation models
  with multi-fidelity Gaussian process classification
Fast characterization of inducible regions of atrial fibrillation models with multi-fidelity Gaussian process classification
Lia Gander
Simone Pezzuto
A. Gharaviri
Rolf Krause
P. Perdikaris
F. Sahli Costabal
48
13
0
15 Dec 2021
Non-Homogeneity Estimation and Universal Kriging on the Sphere
Non-Homogeneity Estimation and Universal Kriging on the Sphere
Nicholas W. Bussberg
Jacob Shields
Chunfeng Huang
16
3
0
06 Jul 2021
Inference for Gaussian Processes with Matérn Covariogram on Compact
  Riemannian Manifolds
Inference for Gaussian Processes with Matérn Covariogram on Compact Riemannian Manifolds
Didong Li
Wenpin Tang
Sudipto Banerjee
87
14
0
08 Apr 2021
The Gauss Hypergeometric Covariance Kernel for Modeling Second-Order
  Stationary Random Fields in Euclidean Spaces: its Compact Support, Properties
  and Spectral Representation
The Gauss Hypergeometric Covariance Kernel for Modeling Second-Order Stationary Random Fields in Euclidean Spaces: its Compact Support, Properties and Spectral Representation
Xavier Emery
Alfredo Alegría
53
13
0
23 Jan 2021
SPHARMA approximations for stationary functional time series on the
  sphere
SPHARMA approximations for stationary functional time series on the sphere
Alessia Caponera
42
12
0
28 Sep 2020
Karhunen-Loève Expansions for Axially Symmetric Gaussian Processes:
  Modeling Strategies and $L^2$ Approximations
Karhunen-Loève Expansions for Axially Symmetric Gaussian Processes: Modeling Strategies and L2L^2L2 Approximations
Alfredo Alegría
F. Cuevas-Pacheco
13
5
0
03 Jul 2020
Spatiotemporal Multi-Resolution Approximations for Analyzing Global
  Environmental Data
Spatiotemporal Multi-Resolution Approximations for Analyzing Global Environmental Data
M. Appel
E. Pebesma
49
13
0
30 Jun 2020
Necessary and sufficient conditions for asymptotically optimal linear
  prediction of random fields on compact metric spaces
Necessary and sufficient conditions for asymptotically optimal linear prediction of random fields on compact metric spaces
Kristin Kirchner
David Bolin
36
10
0
18 May 2020
A unified view of space-time covariance functions through Gelfand pairs
A unified view of space-time covariance functions through Gelfand pairs
C. Berg
10
1
0
27 Apr 2020
The Turning Arcs: a Computationally Efficient Algorithm to Simulate
  Isotropic Vector-Valued Gaussian Random Fields on the $d$-Sphere
The Turning Arcs: a Computationally Efficient Algorithm to Simulate Isotropic Vector-Valued Gaussian Random Fields on the ddd-Sphere
Alfredo Alegría
Xavier Emery
Christian Lantuéjoul
52
16
0
30 Mar 2020
A Deep Conditioning Treatment of Neural Networks
A Deep Conditioning Treatment of Neural Networks
Naman Agarwal
Pranjal Awasthi
Satyen Kale
AI4CE
115
16
0
04 Feb 2020
Recent Developments in Complex and Spatially Correlated Functional Data
Recent Developments in Complex and Spatially Correlated Functional Data
Israel Martínez-Hernádez
M. Genton
46
30
0
05 Jan 2020
Beyond Matérn: On A Class of Interpretable Confluent Hypergeometric
  Covariance Functions
Beyond Matérn: On A Class of Interpretable Confluent Hypergeometric Covariance Functions
P. Ma
A. Bhadra
60
11
0
14 Nov 2019
A Fine-Grained Spectral Perspective on Neural Networks
A Fine-Grained Spectral Perspective on Neural Networks
Greg Yang
Hadi Salman
125
113
0
24 Jul 2019
Asymptotics for Spherical Functional Autoregressions
Asymptotics for Spherical Functional Autoregressions
Alessia Caponera
Domenico Marinucci
31
17
0
12 Jul 2019
rcosmo: R Package for Analysis of Spherical, HEALPix and Cosmological
  Data
rcosmo: R Package for Analysis of Spherical, HEALPix and Cosmological Data
D. Fryer
Ming Li
Andriy Olenko
14
12
0
12 Jul 2019
Modelling and simulation of multifractal star-shaped particles
Modelling and simulation of multifractal star-shaped particles
Alfredo Alegría
25
0
0
22 Jan 2019
Non-Gaussian Geostatistical Modeling using (skew) t Processes
Non-Gaussian Geostatistical Modeling using (skew) t Processes
M. Bevilacqua
Christian Caamaño-Carrillo
R. Arellano-Valle
Víctor Morales-Oñate
158
20
0
15 Dec 2018
A Riemann-Stein Kernel Method
A Riemann-Stein Kernel Method
Alessandro Barp
Christine J. Oates
Emilio Porcu
Mark Girolami
90
22
0
11 Oct 2018
Bayesian quadrature and energy minimization for space-filling design
Bayesian quadrature and energy minimization for space-filling design
L. Pronzato
A. Zhigljavsky
122
9
0
31 Aug 2018
Fast and exact simulation of isotropic Gaussian random fields on
  $\mathbb{S}^{2}$ and $\mathbb{S}^{2}\times \mathbb{R}$
Fast and exact simulation of isotropic Gaussian random fields on S2\mathbb{S}^{2}S2 and S2×R\mathbb{S}^{2}\times \mathbb{R}S2×R
F. Cuevas
Emilio Porcu
D. Allard
10
0
0
11 Jul 2018
Towards a Complete Picture of Stationary Covariance Functions on Spheres
  Cross Time
Towards a Complete Picture of Stationary Covariance Functions on Spheres Cross Time
P. White
Emilio Porcu
37
8
0
11 Jul 2018
Schoenberg coefficients and curvature at the origin of continuous
  isotropic positive definite kernels on spheres
Schoenberg coefficients and curvature at the origin of continuous isotropic positive definite kernels on spheres
A. Arafat
P. Gregori
Emilio Porcu
30
12
0
06 Jul 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
349
3,226
0
20 Jun 2018
Log Gaussian Cox processes on the sphere
Log Gaussian Cox processes on the sphere
Jesper Møller
F. Cuevas-Pacheco
36
6
0
08 Mar 2018
Strictly proper kernel scores and characteristic kernels on compact
  spaces
Strictly proper kernel scores and characteristic kernels on compact spaces
Ingo Steinwart
J. Ziegel
72
25
0
14 Dec 2017
Isotropic covariance functions on graphs and their edges
Isotropic covariance functions on graphs and their edges
E. Anderes
Jesper Møller
J. Rasmussen
48
38
0
03 Oct 2017
Modeling Temporally Evolving and Spatially Globally Dependent Data
Modeling Temporally Evolving and Spatially Globally Dependent Data
Emilio Porcu
Alfredo Alegría
Reinhard Furrer
43
82
0
28 Jun 2017
12
Next