ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1112.5016
  4. Cited By
A Scalable Bootstrap for Massive Data
v1v2 (latest)

A Scalable Bootstrap for Massive Data

21 December 2011
Ariel Kleiner
Ameet Talwalkar
Purnamrita Sarkar
Michael I. Jordan
ArXiv (abs)PDFHTML

Papers citing "A Scalable Bootstrap for Massive Data"

50 / 100 papers shown
Title
A MOM-based ensemble method for robustness, subsampling and
  hyperparameter tuning
A MOM-based ensemble method for robustness, subsampling and hyperparameter tuning
Joon Kwon
Guillaume Lecué
M. Lerasle
43
2
0
06 Dec 2018
Quantile Regression Under Memory Constraint
Quantile Regression Under Memory Constraint
Xi Chen
Weidong Liu
Yichen Zhang
99
119
0
18 Oct 2018
Fitting Probabilistic Index Models on Large Datasets
Fitting Probabilistic Index Models on Large Datasets
Han Bossier
Gustavo Amorim
J. D. Neve
O. Thas
18
0
0
17 Aug 2018
Scalable Bayesian Nonparametric Clustering and Classification
Scalable Bayesian Nonparametric Clustering and Classification
Yang Ni
Peter Muller
M. Diesendruck
Sinead Williamson
Yitan Zhu
Yuan Ji
57
27
0
07 Jun 2018
A Uniform-in-$P$ Edgeworth Expansion under Weak Cramér Conditions
A Uniform-in-PPP Edgeworth Expansion under Weak Cramér Conditions
Kyungchul Song
8
1
0
04 Jun 2018
Distributed Statistical Inference for Massive Data
Distributed Statistical Inference for Massive Data
Songxi Chen
Liuhua Peng
53
27
0
29 May 2018
Approximate Newton-based statistical inference using only stochastic
  gradients
Approximate Newton-based statistical inference using only stochastic gradients
Tianyang Li
Anastasios Kyrillidis
Liu Liu
Constantine Caramanis
65
6
0
23 May 2018
Method G: Uncertainty Quantification for Distributed Data Problems using
  Generalized Fiducial Inference
Method G: Uncertainty Quantification for Distributed Data Problems using Generalized Fiducial Inference
Randy C. S. Lai
Jan Hannig
Thomas C. M. Lee
FedML
28
3
0
18 May 2018
Subsampled Optimization: Statistical Guarantees, Mean Squared Error
  Approximation, and Sampling Method
Subsampled Optimization: Statistical Guarantees, Mean Squared Error Approximation, and Sampling Method
Rong Zhu
Jiming Jiang
15
0
0
10 Apr 2018
Adaptive distributed methods under communication constraints
Adaptive distributed methods under communication constraints
Botond Szabó
Harry Van Zanten
80
24
0
03 Apr 2018
Statistical Validity and Consistency of Big Data Analytics: A General
  Framework
Statistical Validity and Consistency of Big Data Analytics: A General Framework
B. Karmakar
I. Mukhopadhyay
26
1
0
29 Mar 2018
Divide and Recombine for Large and Complex Data: Model Likelihood
  Functions using MCMC
Divide and Recombine for Large and Complex Data: Model Likelihood Functions using MCMC
Qi Liu
A. Bhadra
W. Cleveland
28
0
0
15 Jan 2018
A Random Sample Partition Data Model for Big Data Analysis
A Random Sample Partition Data Model for Big Data Analysis
Salman Salloum
Yulin He
J. Huang
Xiaoliang Zhang
Tamer Z. Emara
Chenghao Wei
Heping He
51
73
0
12 Dec 2017
Randomized incomplete $U$-statistics in high dimensions
Randomized incomplete UUU-statistics in high dimensions
Xiaohui Chen
Kengo Kato
84
42
0
03 Dec 2017
Bootstrapped synthetic likelihood
Bootstrapped synthetic likelihood
R. Everitt
231
14
0
15 Nov 2017
Fast and General Model Selection using Data Depth and Resampling
Fast and General Model Selection using Data Depth and Resampling
S. Majumdar
Snigdhansu Chatterjee
10
1
0
08 Jun 2017
Bayesian Bootstraps for Massive Data
Bayesian Bootstraps for Massive Data
Andrés F. Barrientos
Víctor Pena
41
7
0
28 May 2017
Distributed inference for quantile regression processes
Distributed inference for quantile regression processes
S. Volgushev
Shih-Kang Chao
Guang Cheng
546
131
0
21 Jan 2017
Variable Selection with Scalable Bootstrap in Generalized Linear Model
  for Massive Data
Variable Selection with Scalable Bootstrap in Generalized Linear Model for Massive Data
Zhibing He
Yichen Qin
B. Shia
Yang Li
35
0
0
06 Dec 2016
Arbres CART et Forêts aléatoires, Importance et sélection de
  variables
Arbres CART et Forêts aléatoires, Importance et sélection de variables
Robin Genuer
Jean-Michel Poggi
151
10
0
26 Oct 2016
Network Structure Inference, A Survey: Motivations, Methods, and
  Applications
Network Structure Inference, A Survey: Motivations, Methods, and Applications
Ivan Brugere
Brian Gallagher
T. Berger-Wolf
54
81
0
03 Oct 2016
From Dependence to Causation
From Dependence to Causation
David Lopez-Paz
OODCML
179
26
0
12 Jul 2016
A Massive Data Framework for M-Estimators with Cubic-Rate
A Massive Data Framework for M-Estimators with Cubic-Rate
C. Shi
Wenbin Lu
Rui Song
272
74
0
24 May 2016
Simple, Scalable and Accurate Posterior Interval Estimation
Simple, Scalable and Accurate Posterior Interval Estimation
Cheng Li
Sanvesh Srivastava
David B. Dunson
86
56
0
13 May 2016
Deep Exploration via Bootstrapped DQN
Deep Exploration via Bootstrapped DQN
Ian Osband
Charles Blundell
Alexander Pritzel
Benjamin Van Roy
127
1,315
0
15 Feb 2016
Nonparametric Heterogeneity Testing For Massive Data
Nonparametric Heterogeneity Testing For Massive Data
Junwei Lu
Guang Cheng
Han Liu
58
19
0
23 Jan 2016
Distributed Bayesian Learning with Stochastic Natural-gradient
  Expectation Propagation and the Posterior Server
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
BDL
183
70
0
31 Dec 2015
Random Forests for Big Data
Random Forests for Big Data
Robin Genuer
Jean-Michel Poggi
Christine Tuleau-Malot
N. Villa-Vialaneix
76
309
0
26 Nov 2015
A Random Forest Guided Tour
A Random Forest Guided Tour
Gérard Biau
Erwan Scornet
AI4TS
257
2,862
0
18 Nov 2015
A Distributed One-Step Estimator
A Distributed One-Step Estimator
Cheng Huang
X. Huo
FedML
124
84
0
04 Nov 2015
iotools: High-Performance I/O Tools for R
iotools: High-Performance I/O Tools for R
T. Arnold
Michael J. Kane
Simon Urbanek
11
3
0
30 Sep 2015
Distributed Estimation and Inference with Statistical Guarantees
Distributed Estimation and Inference with Statistical Guarantees
Heather Battey
Jianqing Fan
Han Liu
Junwei Lu
Ziwei Zhu
88
83
0
17 Sep 2015
Statistical Inference, Learning and Models in Big Data
Statistical Inference, Learning and Models in Big Data
B. Franke
Jean‐François Plante
R. Roscher
Annie Lee
Cathal Smyth
...
A. Selvitella
Michael M. Hoffman
Roger C. Grosse
Dieter Hendricks
Nancy Reid
AI4CE
365
53
0
09 Sep 2015
Nonparametric Distributed Learning Architecture for Big Data: Algorithm
  and Applications
Nonparametric Distributed Learning Architecture for Big Data: Algorithm and Applications
S. Bruce
Zeda Li
Hsiang-Chieh Yang
S. Mukhopadhyay
26
13
0
15 Aug 2015
A subsampled double bootstrap for massive data
A subsampled double bootstrap for massive data
Srijan Sengupta
S. Volgushev
Xiaofeng Shao
263
48
0
05 Aug 2015
Scatter Matrix Concordance: A Diagnostic for Regressions on Subsets of
  Data
Scatter Matrix Concordance: A Diagnostic for Regressions on Subsets of Data
Michael J. Kane
B. Lewis
S. Tatikonda
Simon Urbanek
25
0
0
12 Jul 2015
Analyzing statistical and computational tradeoffs of estimation
  procedures
Analyzing statistical and computational tradeoffs of estimation procedures
D. Sussman
A. Volfovsky
E. Airoldi
32
1
0
25 Jun 2015
Online Updating of Statistical Inference in the Big Data Setting
Online Updating of Statistical Inference in the Big Data Setting
E. Schifano
Jing Wu
C. Wang
Jun Yan
Ming-Hui Chen
58
170
0
23 May 2015
Robust, scalable and fast bootstrap method for analyzing large scale
  data
Robust, scalable and fast bootstrap method for analyzing large scale data
Shahab Basiri
Esa Ollila
V. Koivunen
26
29
0
09 Apr 2015
Statistical Methods and Computing for Big Data
Statistical Methods and Computing for Big Data
Chun Wang
Ming-Hui Chen
E. Schifano
Jing Wu
Jun Yan
85
129
0
27 Feb 2015
Software Alchemy: Turning Complex Statistical Computations into
  Embarrassingly-Parallel Ones
Software Alchemy: Turning Complex Statistical Computations into Embarrassingly-Parallel Ones
N. Matloff
FedML
35
21
0
19 Sep 2014
Consistency of random forests
Consistency of random forests
Erwan Scornet
Gérard Biau
Jean-Philippe Vert
201
520
0
12 May 2014
Robust and Scalable Bayes via a Median of Subset Posterior Measures
Robust and Scalable Bayes via a Median of Subset Posterior Measures
Stanislav Minsker
Sanvesh Srivastava
Lizhen Lin
David B. Dunson
132
110
0
11 Mar 2014
On statistics, computation and scalability
On statistics, computation and scalability
Michael I. Jordan
302
110
0
30 Sep 2013
On nonnegative unbiased estimators
On nonnegative unbiased estimators
Pierre E. Jacob
Alexandre Hoang Thiery
175
67
0
25 Sep 2013
Parallel Bayesian Additive Regression Trees
Parallel Bayesian Additive Regression Trees
M. Pratola
H. Chipman
J. Gattiker
D. Higdon
R. McCulloch
W. Rust
93
81
0
07 Sep 2013
B-tests: Low Variance Kernel Two-Sample Tests
B-tests: Low Variance Kernel Two-Sample Tests
Wojciech Zaremba
Arthur Gretton
Matthew Blaschko
121
23
0
08 Jul 2013
Randomized maximum-contrast selection: subagging for large-scale
  regression
Randomized maximum-contrast selection: subagging for large-scale regression
Jelena Bradic
70
13
0
14 Jun 2013
Model-based clustering of large networks
Model-based clustering of large networks
D. Vu
David R. Hunter
M. Schweinberger
90
66
0
01 Jul 2012
The Big Data Bootstrap
The Big Data Bootstrap
Ariel Kleiner
Ameet Talwalkar
Purnamrita Sarkar
Michael I. Jordan
150
150
0
27 Jun 2012
Previous
12