ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1202.5070
  4. Cited By
Optimal detection of sparse principal components in high dimension

Optimal detection of sparse principal components in high dimension

23 February 2012
Quentin Berthet
Philippe Rigollet
ArXivPDFHTML

Papers citing "Optimal detection of sparse principal components in high dimension"

29 / 29 papers shown
Title
Minimax rates in variance and covariance changepoint testing
Minimax rates in variance and covariance changepoint testing
Per August Jarval Moen
35
0
0
13 May 2024
Robust Sparse Estimation for Gaussians with Optimal Error under Huber
  Contamination
Robust Sparse Estimation for Gaussians with Optimal Error under Huber Contamination
Ilias Diakonikolas
Daniel M. Kane
Sushrut Karmalkar
Ankit Pensia
Thanasis Pittas
29
0
0
15 Mar 2024
Sharp Analysis of Power Iteration for Tensor PCA
Sharp Analysis of Power Iteration for Tensor PCA
Yuchen Wu
Kangjie Zhou
20
0
0
02 Jan 2024
Approximate message passing from random initialization with applications
  to $\mathbb{Z}_{2}$ synchronization
Approximate message passing from random initialization with applications to Z2\mathbb{Z}_{2}Z2​ synchronization
Gen Li
Wei Fan
Yuting Wei
26
10
0
07 Feb 2023
Sparse PCA With Multiple Components
Sparse PCA With Multiple Components
Ryan Cory-Wright
J. Pauphilet
20
2
0
29 Sep 2022
Robust Testing in High-Dimensional Sparse Models
Robust Testing in High-Dimensional Sparse Models
Anand George
C. Canonne
33
3
0
16 May 2022
Classification of high-dimensional data with spiked covariance matrix
  structure
Classification of high-dimensional data with spiked covariance matrix structure
Yin-Jen Chen
M. Tang
53
0
0
05 Oct 2021
Sparse principal component analysis for high-dimensional stationary time
  series
Sparse principal component analysis for high-dimensional stationary time series
Kou Fujimori
Yuichi Goto
Y. Liu
M. Taniguchi
18
2
0
01 Sep 2021
The Nonconvex Geometry of Linear Inverse Problems
The Nonconvex Geometry of Linear Inverse Problems
Armin Eftekhari
Peyman Mohajerin Esfahani
11
1
0
07 Jan 2021
Optimal multiple change-point detection for high-dimensional data
Optimal multiple change-point detection for high-dimensional data
Emmanuel Pilliat
Alexandra Carpentier
Nicolas Verzélen
14
14
0
16 Nov 2020
Computationally efficient sparse clustering
Computationally efficient sparse clustering
Matthias Löffler
Alexander S. Wein
Afonso S. Bandeira
22
14
0
21 May 2020
Reducibility and Statistical-Computational Gaps from Secret Leakage
Reducibility and Statistical-Computational Gaps from Secret Leakage
Matthew Brennan
Guy Bresler
19
85
0
16 May 2020
Subexponential-Time Algorithms for Sparse PCA
Subexponential-Time Algorithms for Sparse PCA
Yunzi Ding
Dmitriy Kunisky
Alexander S. Wein
Afonso S. Bandeira
20
57
0
26 Jul 2019
Minimax rates in sparse, high-dimensional changepoint detection
Minimax rates in sparse, high-dimensional changepoint detection
Haoyang Liu
Chao Gao
R. Samworth
11
46
0
23 Jul 2019
Generalized Four Moment Theorem with an application to the CLT for the
  spiked eigenvalues of high-dimensional general Fisher-matrices
Generalized Four Moment Theorem with an application to the CLT for the spiked eigenvalues of high-dimensional general Fisher-matrices
Dandan Jiang
Zhiqiang Hou
Z. Bai
15
1
0
11 Apr 2019
Notes on computational-to-statistical gaps: predictions using
  statistical physics
Notes on computational-to-statistical gaps: predictions using statistical physics
Afonso S. Bandeira
Amelia Perry
Alexander S. Wein
AI4CE
8
57
0
29 Mar 2018
High-dimensional covariance matrices in elliptical distributions with
  application to spherical test
High-dimensional covariance matrices in elliptical distributions with application to spherical test
Jiang Hu
Weiming Li
Zhi Liu
Wang Zhou
9
35
0
21 Mar 2018
Hypothesis Testing For Densities and High-Dimensional Multinomials:
  Sharp Local Minimax Rates
Hypothesis Testing For Densities and High-Dimensional Multinomials: Sharp Local Minimax Rates
Sivaraman Balakrishnan
Larry A. Wasserman
11
50
0
30 Jun 2017
Tensor SVD: Statistical and Computational Limits
Tensor SVD: Statistical and Computational Limits
Anru R. Zhang
Dong Xia
16
167
0
08 Mar 2017
Homotopy Analysis for Tensor PCA
Homotopy Analysis for Tensor PCA
Anima Anandkumar
Yuan-bei Deng
Rong Ge
H. Mobahi
10
43
0
28 Oct 2016
Message-passing algorithms for synchronization problems over compact
  groups
Message-passing algorithms for synchronization problems over compact groups
Amelia Perry
Alexander S. Wein
Afonso S. Bandeira
Ankur Moitra
16
82
0
14 Oct 2016
The use of deep learning in image segmentation, classification and
  detection
The use of deep learning in image segmentation, classification and detection
Mihai-Sorin Badea
Iulian-Ionut Felea
L. Florea
C. Vertan
22
20
0
31 May 2016
Finding a Large Submatrix of a Gaussian Random Matrix
Finding a Large Submatrix of a Gaussian Random Matrix
D. Gamarnik
Quan Li
21
28
0
26 Feb 2016
Detecting Markov Random Fields Hidden in White Noise
Detecting Markov Random Fields Hidden in White Noise
E. Arias-Castro
Sébastien Bubeck
Gábor Lugosi
Nicolas Verzélen
26
12
0
27 Apr 2015
Testing uniformity on high-dimensional spheres against monotone
  rotationally symmetric alternatives
Testing uniformity on high-dimensional spheres against monotone rotationally symmetric alternatives
Christine Cutting
D. Paindaveine
Thomas Verdebout
22
21
0
07 Feb 2015
Computational and Statistical Boundaries for Submatrix Localization in a
  Large Noisy Matrix
Computational and Statistical Boundaries for Submatrix Localization in a Large Noisy Matrix
T. Tony Cai
Tengyuan Liang
Alexander Rakhlin
24
61
0
06 Feb 2015
Statistical and computational trade-offs in estimation of sparse
  principal components
Statistical and computational trade-offs in estimation of sparse principal components
Tengyao Wang
Quentin Berthet
R. Samworth
45
136
0
22 Aug 2014
High Dimensional Semiparametric Scale-Invariant Principal Component
  Analysis
High Dimensional Semiparametric Scale-Invariant Principal Component Analysis
Fang Han
Han Liu
26
16
0
18 Feb 2014
Computational barriers in minimax submatrix detection
Computational barriers in minimax submatrix detection
Zongming Ma
Yihong Wu
28
149
0
23 Sep 2013
1