Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1205.6326
Cited By
v1
v2 (latest)
A Framework for Evaluating Approximation Methods for Gaussian Process Regression
Journal of machine learning research (JMLR), 2012
29 May 2012
Krzysztof Chalupka
Christopher K. I. Williams
Iain Murray
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Framework for Evaluating Approximation Methods for Gaussian Process Regression"
46 / 46 papers shown
Title
nuGPR: GPU-Accelerated Gaussian Process Regression with Iterative Algorithms and Low-Rank Approximations
SIAM Journal on Scientific Computing (SISC), 2025
Ziqi Zhao
Vivek Sarin
72
0
0
14 Oct 2025
Fast Gaussian process inference by exact Matérn kernel decomposition
N. Langrené
X. Warin
Pierre Gruet
120
0
0
03 Aug 2025
A Partitioned Sparse Variational Gaussian Process for Fast, Distributed Spatial Modeling
M. Grosskopf
Kellin Rumsey
Ayan Biswas
E. Lawrence
95
0
0
22 Jul 2025
Efficient dynamic modal load reconstruction using physics-informed Gaussian processes based on frequency-sparse Fourier basis functions
Mechanical systems and signal processing (MSSP), 2025
Gledson Rodrigo Tondo
I. Kavrakov
Guido Morgenthal
167
2
0
13 Mar 2025
Scalable Random Feature Latent Variable Models
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2024
Ying Li
Zhidi Lin
Yuhao Liu
Michael Minyi Zhang
Pablo M. Olmos
Petar M. Djurić
BDL
DRL
238
0
0
23 Oct 2024
A Framework of Zero-Inflated Bayesian Negative Binomial Regression Models For Spatiotemporal Data
Qing He
Hsin-Hsiung Huang
205
5
0
06 Feb 2024
Sparse Cholesky factorization by greedy conditional selection
Stephen Huan
J. Guinness
Matthias Katzfuss
H. Owhadi
Florian Schäfer
84
0
0
21 Jul 2023
Leveraging Locality and Robustness to Achieve Massively Scalable Gaussian Process Regression
Neural Information Processing Systems (NeurIPS), 2023
Robert Allison
Anthony Stephenson
F. Samuel
Edward O. Pyzer-Knapp
UQCV
217
5
0
26 Jun 2023
Query-Efficient Black-Box Red Teaming via Bayesian Optimization
Annual Meeting of the Association for Computational Linguistics (ACL), 2023
Deokjae Lee
JunYeong Lee
Jung-Woo Ha
Jin-Hwa Kim
Sang-Woo Lee
Hwaran Lee
Hyun Oh Song
AAML
160
28
0
27 May 2023
A Global-Local Approximation Framework for Large-Scale Gaussian Process Modeling
Akhil Vakayil
Roshan Joseph
172
5
0
17 May 2023
Query-Efficient and Scalable Black-Box Adversarial Attacks on Discrete Sequential Data via Bayesian Optimization
International Conference on Machine Learning (ICML), 2022
Deokjae Lee
Seungyong Moon
Junhyeok Lee
Hyun Oh Song
AAML
154
47
0
17 Jun 2022
Forward variable selection enables fast and accurate dynamic system identification with Karhunen-Loève decomposed Gaussian processes
PLoS ONE (PLoS ONE), 2022
Kyle Hayes
Michael W. Fouts
Ali Baheri
D. Mebane
327
0
0
26 May 2022
Adaptive Cholesky Gaussian Processes
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Simon Bartels
Kristoffer Stensbo-Smidt
Pablo Moreno-Muñoz
Wouter Boomsma
J. Frellsen
Søren Hauberg
216
4
0
22 Feb 2022
Scalable3-BO: Big Data meets HPC - A scalable asynchronous parallel high-dimensional Bayesian optimization framework on supercomputers
Conference on Computability in Europe (CiE), 2021
Anh Tran
143
2
0
12 Aug 2021
Kernel-Matrix Determinant Estimates from stopped Cholesky Decomposition
Journal of machine learning research (JMLR), 2021
Simon Bartels
Wouter Boomsma
J. Frellsen
Damien Garreau
180
6
0
22 Jul 2021
Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
190
29
0
26 Jun 2021
Gaussian Processes with Skewed Laplace Spectral Mixture Kernels for Long-term Forecasting
Kai Chen
Twan van Laarhoven
E. Marchiori
AI4TS
253
9
0
08 Nov 2020
Aggregating Dependent Gaussian Experts in Local Approximation
International Conference on Pattern Recognition (ICPR), 2020
Hamed Jalali
Gjergji Kasneci
146
4
0
17 Oct 2020
A Bayesian Nonparametric Analysis of the 2003 Outbreak of Highly Pathogenic Avian Influenza in the Netherlands
Rowland G. Seymour
T. Kypraios
P. O’Neill
T. Hagenaars
101
5
0
09 Sep 2020
Examining the Role of Mood Patterns in Predicting Self-Reported Depressive symptoms
Web Science Conference (WebSci), 2020
L. L. Chen
Walid Magdy
H. Whalley
M. Wolters
91
12
0
14 Jun 2020
Fast increased fidelity approximate Gibbs samplers for Bayesian Gaussian process regression
Journal of The Royal Statistical Society Series B-statistical Methodology (JRSSB), 2020
Kelly R. Moran
M. Wheeler
114
4
0
11 Jun 2020
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
221
15
0
08 Jun 2020
aphBO-2GP-3B: A budgeted asynchronous parallel multi-acquisition functions for constrained Bayesian optimization on high-performing computing architecture
Anh Tran
J. Furlan
T. Wildey
S. McCann
K. Pagalthivarthi
R. Visintainer
193
9
0
20 Mar 2020
Development of modeling and control strategies for an approximated Gaussian process
Shisheng Cui
Chia-Jung Chang
153
0
0
12 Feb 2020
Conjugate Gradients for Kernel Machines
Journal of machine learning research (JMLR), 2019
Simon Bartels
Philipp Hennig
162
5
0
14 Nov 2019
A Low Rank Gaussian Process Prediction Model for Very Large Datasets
R. Rivera
94
1
0
09 Jun 2019
Wireless Traffic Prediction with Scalable Gaussian Process: Framework, Algorithms, and Verification
IEEE Journal on Selected Areas in Communications (JSAC), 2019
Yue Xu
Feng Yin
Wenjun Xu
Jiaru Lin
Shuguang Cui
171
106
0
13 Feb 2019
Large-scale Heteroscedastic Regression via Gaussian Process
Haitao Liu
Yew-Soon Ong
Jianfei Cai
BDL
244
30
0
03 Nov 2018
Understanding and Comparing Scalable Gaussian Process Regression for Big Data
Haitao Liu
Jianfei Cai
Yew-Soon Ong
Yi Wang
123
30
0
03 Nov 2018
Multi-Output Convolution Spectral Mixture for Gaussian Processes
Kai Chen
Twan van Laarhoven
P. Groot
Jinsong Chen
E. Marchiori
381
11
0
07 Aug 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2018
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
363
788
0
03 Jul 2018
A Data-Driven Approach to Dynamically Adjust Resource Allocation for Compute Clusters
Francesco Pace
Dimitrios Milios
D. Carra
D. Venzano
Pietro Michiardi
132
4
0
01 Jul 2018
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression
Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
167
89
0
03 Jun 2018
Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference
B. Thijssen
L. Wessels
214
9
0
12 Dec 2017
Cluster-based Kriging Approximation Algorithms for Complexity Reduction
Bas van Stein
Hao Wang
W. Kowalczyk
M. Emmerich
Thomas Bäck
169
47
0
04 Feb 2017
Overlapping Cover Local Regression Machines
Mohamed Elhoseiny
Ahmed Elgammal
151
0
0
05 Jan 2017
Exploring Prediction Uncertainty in Machine Translation Quality Estimation
Conference on Computational Natural Language Learning (CoNLL), 2016
Daniel Beck
Lucia Specia
Trevor Cohn
UQLM
166
19
0
30 Jun 2016
Preconditioning Kernel Matrices
Kurt Cutajar
Michael A. Osborne
John P. Cunningham
Maurizio Filippone
306
77
0
22 Feb 2016
System Identification through Online Sparse Gaussian Process Regression with Input Noise
Hildo Bijl
Thomas B. Schon
J. Wingerden
M. Verhaegen
235
45
0
29 Jan 2016
Gaussian Process Random Fields
David A. Moore
Stuart J. Russell
GP
134
19
0
31 Oct 2015
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
A. Wilson
H. Nickisch
GP
236
539
0
03 Mar 2015
Distributed Gaussian Processes
M. Deisenroth
Jun Wei Ng
GP
330
366
0
10 Feb 2015
Fast Direct Methods for Gaussian Processes
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2014
Sivaram Ambikasaran
D. Foreman-Mackey
L. Greengard
D. Hogg
M. O’Neil
289
396
0
24 Mar 2014
Robust and Scalable Bayes via a Median of Subset Posterior Measures
Journal of machine learning research (JMLR), 2014
Stanislav Minsker
Sanvesh Srivastava
Lizhen Lin
David B. Dunson
414
113
0
11 Mar 2014
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
Statistics and computing (Stat Comput), 2014
Arno Solin
Simo Särkkä
522
242
0
21 Jan 2014
Efficient Optimization for Sparse Gaussian Process Regression
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2013
Yanshuai Cao
Marcus A. Brubaker
David J. Fleet
Aaron Hertzmann
287
67
0
22 Oct 2013
1