ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.6410
  4. Cited By
On the Partition Function and Random Maximum A-Posteriori Perturbations

On the Partition Function and Random Maximum A-Posteriori Perturbations

27 June 2012
Tamir Hazan
Tommi Jaakkola
ArXiv (abs)PDFHTML

Papers citing "On the Partition Function and Random Maximum A-Posteriori Perturbations"

46 / 46 papers shown
Title
Gumbel Counterfactual Generation From Language Models
Gumbel Counterfactual Generation From Language Models
Shauli Ravfogel
Anej Svete
Vésteinn Snæbjarnarson
Ryan Cotterell
LRMCML
87
1
0
11 Nov 2024
A Family of Distributions of Random Subsets for Controlling Positive and Negative Dependence
A Family of Distributions of Random Subsets for Controlling Positive and Negative Dependence
Sangwoo Shin
H. Hino
78
0
0
02 Aug 2024
UDQL: Bridging The Gap between MSE Loss and The Optimal Value Function
  in Offline Reinforcement Learning
UDQL: Bridging The Gap between MSE Loss and The Optimal Value Function in Offline Reinforcement Learning
Yu Zhang
Rui Yu
Zhipeng Yao
Wenyuan Zhang
Jun Wang
Liming Zhang
OffRL
110
0
0
05 Jun 2024
A safety realignment framework via subspace-oriented model fusion for
  large language models
A safety realignment framework via subspace-oriented model fusion for large language models
Xin Yi
Shunfan Zheng
Linlin Wang
Xiaoling Wang
Liang He
113
27
0
15 May 2024
Generative Modeling of Discrete Joint Distributions by E-Geodesic Flow
  Matching on Assignment Manifolds
Generative Modeling of Discrete Joint Distributions by E-Geodesic Flow Matching on Assignment Manifolds
Bastian Boll
Daniel Gonzalez-Alvarado
Christoph Schnörr
DRL
85
4
0
12 Feb 2024
Solving Satisfiability Modulo Counting for Symbolic and Statistical AI
  Integration With Provable Guarantees
Solving Satisfiability Modulo Counting for Symbolic and Statistical AI Integration With Provable Guarantees
Jinzhao Li
Nan Jiang
Yexiang Xue
58
1
0
16 Sep 2023
SpotEM: Efficient Video Search for Episodic Memory
SpotEM: Efficient Video Search for Episodic Memory
Santhosh Kumar Ramakrishnan
Ziad Al-Halah
Kristen Grauman
VLM
93
9
0
28 Jun 2023
Topology-Aware Uncertainty for Image Segmentation
Topology-Aware Uncertainty for Image Segmentation
Saumya Gupta
Yikai Zhang
Xiaoling Hu
Prateek Prasanna
Chao Chen
82
30
0
09 Jun 2023
Extreme Q-Learning: MaxEnt RL without Entropy
Extreme Q-Learning: MaxEnt RL without Entropy
Divyansh Garg
Joey Hejna
Matthieu Geist
Stefano Ermon
OffRL
87
80
0
05 Jan 2023
Adaptive Perturbation-Based Gradient Estimation for Discrete Latent
  Variable Models
Adaptive Perturbation-Based Gradient Estimation for Discrete Latent Variable Models
Pasquale Minervini
Luca Franceschi
Mathias Niepert
101
11
0
11 Sep 2022
Perturb-and-max-product: Sampling and learning in discrete energy-based
  models
Perturb-and-max-product: Sampling and learning in discrete energy-based models
Miguel Lazaro-Gredilla
Antoine Dedieu
Dileep George
49
9
0
03 Nov 2021
Modular Meta-Learning for Power Control via Random Edge Graph Neural
  Networks
Modular Meta-Learning for Power Control via Random Edge Graph Neural Networks
I. Nikoloska
Osvaldo Simeone
79
22
0
04 Aug 2021
Implicit MLE: Backpropagating Through Discrete Exponential Family
  Distributions
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions
Mathias Niepert
Pasquale Minervini
Luca Franceschi
81
87
0
03 Jun 2021
Partition Function Estimation: A Quantitative Study
Partition Function Estimation: A Quantitative Study
Durgesh Kumar Agrawal
Yash Pote
Kuldeep S. Meel
71
11
0
24 May 2021
A Differentiable Relaxation of Graph Segmentation and Alignment for AMR
  Parsing
A Differentiable Relaxation of Graph Segmentation and Alignment for AMR Parsing
Chunchuan Lyu
Shay B. Cohen
Ivan Titov
111
11
0
23 Oct 2020
Belief Propagation Neural Networks
Belief Propagation Neural Networks
Jonathan Kuck
Shuvam Chakraborty
Hao Tang
Rachel Luo
Jiaming Song
Ashish Sabharwal
Stefano Ermon
98
40
0
01 Jul 2020
Counterfactually Guided Off-policy Transfer in Clinical Settings
Counterfactually Guided Off-policy Transfer in Clinical Settings
Taylor W. Killian
Marzyeh Ghassemi
Shalmali Joshi
CMLOffRLOOD
59
12
0
20 Jun 2020
Gradient Estimation with Stochastic Softmax Tricks
Gradient Estimation with Stochastic Softmax Tricks
Max B. Paulus
Dami Choi
Daniel Tarlow
Andreas Krause
Chris J. Maddison
BDL
97
88
0
15 Jun 2020
Learning with Differentiable Perturbed Optimizers
Learning with Differentiable Perturbed Optimizers
Quentin Berthet
Mathieu Blondel
O. Teboul
Marco Cuturi
Jean-Philippe Vert
Francis R. Bach
94
109
0
20 Feb 2020
LiteEval: A Coarse-to-Fine Framework for Resource Efficient Video
  Recognition
LiteEval: A Coarse-to-Fine Framework for Resource Efficient Video Recognition
Zuxuan Wu
Caiming Xiong
Yu-Gang Jiang
L. Davis
81
110
0
03 Dec 2019
Towards Efficient Discrete Integration via Adaptive Quantile Queries
Towards Efficient Discrete Integration via Adaptive Quantile Queries
Fan Ding
Hanjing Wang
Ashish Sabharwal
Yexiang Xue
46
4
0
13 Oct 2019
Joint Learning of Geometric and Probabilistic Constellation Shaping
Joint Learning of Geometric and Probabilistic Constellation Shaping
Maximilian Stark
Fayçal Ait Aoudia
J. Hoydis
57
83
0
18 Jun 2019
Direct Policy Gradients: Direct Optimization of Policies in Discrete
  Action Spaces
Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces
Guy Lorberbom
Chris J. Maddison
N. Heess
Tamir Hazan
Daniel Tarlow
90
8
0
14 Jun 2019
Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal
  Models
Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models
Michael Oberst
David Sontag
CMLOffRL
83
174
0
14 May 2019
Stochastic Beams and Where to Find Them: The Gumbel-Top-k Trick for
  Sampling Sequences Without Replacement
Stochastic Beams and Where to Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement
W. Kool
H. V. Hoof
Max Welling
131
220
0
14 Mar 2019
A Tutorial on Deep Latent Variable Models of Natural Language
A Tutorial on Deep Latent Variable Models of Natural Language
Yoon Kim
Sam Wiseman
Alexander M. Rush
BDLVLM
121
42
0
17 Dec 2018
Marginal Weighted Maximum Log-likelihood for Efficient Learning of
  Perturb-and-Map models
Marginal Weighted Maximum Log-likelihood for Efficient Learning of Perturb-and-Map models
Tatiana Shpakova
Francis R. Bach
A. Osokin
16
5
0
21 Nov 2018
Learning Maximum-A-Posteriori Perturbation Models for Structured
  Prediction in Polynomial Time
Learning Maximum-A-Posteriori Perturbation Models for Structured Prediction in Polynomial Time
Asish Ghoshal
Jean Honorio
TPM
16
3
0
21 May 2018
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Gonzalo E. Mena
David Belanger
Scott W. Linderman
Jasper Snoek
112
272
0
23 Feb 2018
Approximate Inference via Weighted Rademacher Complexity
Approximate Inference via Weighted Rademacher Complexity
Jonathan Kuck
Ashish Sabharwal
Stefano Ermon
62
7
0
27 Jan 2018
Lost Relatives of the Gumbel Trick
Lost Relatives of the Gumbel Trick
Matej Balog
Nilesh Tripuraneni
Zoubin Ghahramani
Adrian Weller
82
27
0
13 Jun 2017
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
216
2,541
0
02 Nov 2016
Parameter Learning for Log-supermodular Distributions
Parameter Learning for Log-supermodular Distributions
Tatiana Shpakova
Francis R. Bach
36
8
0
18 Aug 2016
Local Perturb-and-MAP for Structured Prediction
Local Perturb-and-MAP for Structured Prediction
Gedas Bertasius
Qiang Liu
Lorenzo Torresani
Jianbo Shi
30
4
0
24 May 2016
High Dimensional Inference with Random Maximum A-Posteriori
  Perturbations
High Dimensional Inference with Random Maximum A-Posteriori Perturbations
Tamir Hazan
Francesco Orabona
Anand D. Sarwate
Subhransu Maji
Tommi Jaakkola
75
7
0
10 Feb 2016
Multicuts and Perturb & MAP for Probabilistic Graph Clustering
Multicuts and Perturb & MAP for Probabilistic Graph Clustering
Jörg H. Kappes
Paul Swoboda
Bogdan Savchynskyy
Tamir Hazan
Christoph Schnörr
28
7
0
09 Jan 2016
Barrier Frank-Wolfe for Marginal Inference
Barrier Frank-Wolfe for Marginal Inference
Rahul G. Krishnan
Simon Lacoste-Julien
David Sontag
105
38
0
06 Nov 2015
Message Passing and Combinatorial Optimization
Message Passing and Combinatorial Optimization
Siamak Ravanbakhsh
89
1
0
20 Aug 2015
Variable Elimination in the Fourier Domain
Variable Elimination in the Fourier Domain
Yexiang Xue
Stefano Ermon
Ronan Le Bras
Carla P. Gomes
B. Selman
TPM
75
11
0
17 Aug 2015
A* Sampling
A* Sampling
Chris J. Maddison
Daniel Tarlow
T. Minka
121
393
0
31 Oct 2014
Training Restricted Boltzmann Machine by Perturbation
Training Restricted Boltzmann Machine by Perturbation
Siamak Ravanbakhsh
Russell Greiner
B. Frey
60
3
0
06 May 2014
Approximating the Bethe partition function
Approximating the Bethe partition function
Adrian Weller
Tony Jebara
50
29
0
30 Dec 2013
On Measure Concentration of Random Maximum A-Posteriori Perturbations
On Measure Concentration of Random Maximum A-Posteriori Perturbations
Francesco Orabona
Tamir Hazan
Anand D. Sarwate
Tommi Jaakkola
76
14
0
15 Oct 2013
On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori
  Perturbations
On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations
Tamir Hazan
Subhransu Maji
Tommi Jaakkola
81
56
0
29 Sep 2013
Taming the Curse of Dimensionality: Discrete Integration by Hashing and
  Optimization
Taming the Curse of Dimensionality: Discrete Integration by Hashing and Optimization
Stefano Ermon
Carla P. Gomes
Ashish Sabharwal
B. Selman
77
131
0
27 Feb 2013
An Efficient Algorithm for Upper Bound on the Partition Function of
  Nucleic Acids
An Efficient Algorithm for Upper Bound on the Partition Function of Nucleic Acids
H. Chitsaz
Elmira Forouzmand
Gholamreza Haffari
51
3
0
08 Jan 2013
1