ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1211.6302
  4. Cited By
Duality between subgradient and conditional gradient methods
v1v2v3 (latest)

Duality between subgradient and conditional gradient methods

27 November 2012
Francis R. Bach
ArXiv (abs)PDFHTML

Papers citing "Duality between subgradient and conditional gradient methods"

34 / 34 papers shown
Title
Some Primal-Dual Theory for Subgradient Methods for Strongly Convex Optimization
Some Primal-Dual Theory for Subgradient Methods for Strongly Convex Optimization
Benjamin Grimmer
Danlin Li
114
6
0
31 Dec 2024
Fast Stochastic Composite Minimization and an Accelerated Frank-Wolfe
  Algorithm under Parallelization
Fast Stochastic Composite Minimization and an Accelerated Frank-Wolfe Algorithm under Parallelization
Benjamin Dubois-Taine
Francis R. Bach
Quentin Berthet
Adrien B. Taylor
88
5
0
25 May 2022
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and
  Beyond
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond
Đ.Khuê Lê-Huu
Alahari Karteek
93
12
0
27 Oct 2021
Demystifying and Generalizing BinaryConnect
Demystifying and Generalizing BinaryConnect
Abhishek Sharma
Yaoliang Yu
Eyyub Sari
Mahdi Zolnouri
V. Nia
MQ
64
9
0
25 Oct 2021
Screening for a Reweighted Penalized Conditional Gradient Method
Screening for a Reweighted Penalized Conditional Gradient Method
Yifan Sun
Francis R. Bach
43
0
0
02 Jul 2021
Approximate Frank-Wolfe Algorithms over Graph-structured Support Sets
Approximate Frank-Wolfe Algorithms over Graph-structured Support Sets
Baojian Zhou
Yifan Sun
75
1
0
29 Jun 2021
Improved Branch and Bound for Neural Network Verification via Lagrangian
  Decomposition
Improved Branch and Bound for Neural Network Verification via Lagrangian Decomposition
Alessandro De Palma
Rudy Bunel
Alban Desmaison
Krishnamurthy Dvijotham
Pushmeet Kohli
Philip Torr
M. P. Kumar
76
52
0
14 Apr 2021
First-Order Methods for Convex Optimization
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
83
26
0
04 Jan 2021
Projection Efficient Subgradient Method and Optimal Nonsmooth
  Frank-Wolfe Method
Projection Efficient Subgradient Method and Optimal Nonsmooth Frank-Wolfe Method
K. K. Thekumparampil
Prateek Jain
Praneeth Netrapalli
Sewoong Oh
76
22
0
05 Oct 2020
Consistent Structured Prediction with Max-Min Margin Markov Networks
Consistent Structured Prediction with Max-Min Margin Markov Networks
Alex Nowak-Vila
Francis R. Bach
Alessandro Rudi
45
15
0
02 Jul 2020
The Power of Factorial Powers: New Parameter settings for (Stochastic)
  Optimization
The Power of Factorial Powers: New Parameter settings for (Stochastic) Optimization
Aaron Defazio
Robert Mansel Gower
59
7
0
01 Jun 2020
Lagrangian Decomposition for Neural Network Verification
Lagrangian Decomposition for Neural Network Verification
Rudy Bunel
Alessandro De Palma
Alban Desmaison
Krishnamurthy Dvijotham
Pushmeet Kohli
Philip Torr
M. P. Kumar
77
50
0
24 Feb 2020
Safe Screening for the Generalized Conditional Gradient Method
Safe Screening for the Generalized Conditional Gradient Method
Yifan Sun
Francis R. Bach
63
9
0
22 Feb 2020
On the Effectiveness of Richardson Extrapolation in Machine Learning
On the Effectiveness of Richardson Extrapolation in Machine Learning
Francis R. Bach
55
9
0
07 Feb 2020
A Distributed Quasi-Newton Algorithm for Primal and Dual Regularized
  Empirical Risk Minimization
A Distributed Quasi-Newton Algorithm for Primal and Dual Regularized Empirical Risk Minimization
Ching-pei Lee
Cong Han Lim
Stephen J. Wright
15
3
0
12 Dec 2019
Revisiting the Approximate Carathéodory Problem via the Frank-Wolfe
  Algorithm
Revisiting the Approximate Carathéodory Problem via the Frank-Wolfe Algorithm
Cyrille W. Combettes
Sebastian Pokutta
90
26
0
11 Nov 2019
Characterizing the implicit bias via a primal-dual analysis
Characterizing the implicit bias via a primal-dual analysis
Ziwei Ji
Matus Telgarsky
72
20
0
11 Jun 2019
Model Function Based Conditional Gradient Method with Armijo-like Line
  Search
Model Function Based Conditional Gradient Method with Armijo-like Line Search
Yura Malitsky
Peter Ochs
47
4
0
23 Jan 2019
Deep Frank-Wolfe For Neural Network Optimization
Deep Frank-Wolfe For Neural Network Optimization
Leonard Berrada
Andrew Zisserman
M. P. Kumar
ODL
64
40
0
19 Nov 2018
Efficient Relaxations for Dense CRFs with Sparse Higher Order Potentials
Efficient Relaxations for Dense CRFs with Sparse Higher Order Potentials
Thomas Joy
Alban Desmaison
Thalaiyasingam Ajanthan
Rudy Bunel
Mathieu Salzmann
Pushmeet Kohli
Philip Torr
M. P. Kumar
81
6
0
23 May 2018
Riemannian Optimization via Frank-Wolfe Methods
Riemannian Optimization via Frank-Wolfe Methods
Melanie Weber
S. Sra
69
33
0
30 Oct 2017
Stochastic Composite Least-Squares Regression with convergence rate
  O(1/n)
Stochastic Composite Least-Squares Regression with convergence rate O(1/n)
Nicolas Flammarion
Francis R. Bach
83
17
0
21 Feb 2017
Efficient Linear Programming for Dense CRFs
Efficient Linear Programming for Dense CRFs
Thalaiyasingam Ajanthan
Alban Desmaison
Rudy Bunel
Mathieu Salzmann
Philip Torr
M. P. Kumar
44
16
0
29 Nov 2016
Structured Nonconvex and Nonsmooth Optimization: Algorithms and
  Iteration Complexity Analysis
Structured Nonconvex and Nonsmooth Optimization: Algorithms and Iteration Complexity Analysis
Bo Jiang
Tianyi Lin
Shiqian Ma
Shuzhong Zhang
77
146
0
09 May 2016
Primal-Dual Rates and Certificates
Primal-Dual Rates and Certificates
Celestine Mendler-Dünner
Simone Forte
Martin Takáč
Martin Jaggi
112
60
0
16 Feb 2016
Tight Bounds for Approximate Carathéodory and Beyond
Tight Bounds for Approximate Carathéodory and Beyond
Vahab Mirrokni
R. Leme
Adrian Vladu
Sam Chiu-wai Wong
66
32
0
29 Dec 2015
Submodular Functions: from Discrete to Continous Domains
Submodular Functions: from Discrete to Continous Domains
Francis R. Bach
180
149
0
02 Nov 2015
A New Perspective on Boosting in Linear Regression via Subgradient
  Optimization and Relatives
A New Perspective on Boosting in Linear Regression via Subgradient Optimization and Relatives
R. Freund
Paul Grigas
Rahul Mazumder
64
43
0
16 May 2015
Breaking the Curse of Dimensionality with Convex Neural Networks
Breaking the Curse of Dimensionality with Convex Neural Networks
Francis R. Bach
218
706
0
30 Dec 2014
Generalized Conditional Gradient for Sparse Estimation
Generalized Conditional Gradient for Sparse Estimation
Yaoliang Yu
Xinhua Zhang
Dale Schuurmans
85
78
0
17 Oct 2014
Towards A Deeper Geometric, Analytic and Algorithmic Understanding of
  Margins
Towards A Deeper Geometric, Analytic and Algorithmic Understanding of Margins
Aaditya Ramdas
Javier F. Pena
87
26
0
20 Jun 2014
Hybrid Conditional Gradient - Smoothing Algorithms with Applications to
  Sparse and Low Rank Regularization
Hybrid Conditional Gradient - Smoothing Algorithms with Applications to Sparse and Low Rank Regularization
Andreas Argyriou
Marco Signoretto
Johan A. K. Suykens
145
22
0
14 Apr 2014
Convex relaxations of structured matrix factorizations
Convex relaxations of structured matrix factorizations
Francis R. Bach
112
38
0
12 Sep 2013
Learning with Submodular Functions: A Convex Optimization Perspective
Learning with Submodular Functions: A Convex Optimization Perspective
Francis R. Bach
181
479
0
28 Nov 2011
1