Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1301.6624
Cited By
v1
v2
v3
v4 (latest)
Markovian acyclic directed mixed graphs for discrete data
28 January 2013
R. Evans
Thomas S. Richardson
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Markovian acyclic directed mixed graphs for discrete data"
25 / 25 papers shown
Title
Zero Inflation as a Missing Data Problem: a Proxy-based Approach
Trung-Nghia Phung
Jaron J. R. Lee
Opeyemi Oladapo-Shittu
Eili Y. Klein
A. P. Gurses
...
Kimberly Weems
Jill A. Marsteller
Sara E. Cosgrove
Sara C. Keller
I. Shpitser
58
0
0
01 Jun 2024
CURE: Simulation-Augmented Auto-Tuning in Robotics
Md. Abir Hossen
Sonam Kharade
Jason M. O'Kane
B. Schmerl
David Garlan
Pooyan Jamshidi
99
1
0
08 Feb 2024
Confounder selection via iterative graph expansion
F. R. Guo
Qingyuan Zhao
CML
54
6
0
12 Sep 2023
Self-Compatibility: Evaluating Causal Discovery without Ground Truth
P. M. Faller
L. C. Vankadara
Atalanti A. Mastakouri
Francesco Locatello
Dominik Janzing Karlsruhe Institute of Technology
CML
87
16
0
18 Jul 2023
Causal Razors
Wai-yin Lam
CML
65
0
0
20 Feb 2023
Data-Driven Causal Effect Estimation Based on Graphical Causal Modelling: A Survey
Debo Cheng
Jiuyong Li
Lin Liu
Jixue Liu
T. Le
CML
94
32
0
20 Aug 2022
Blessing of Dependence: Identifiability and Geometry of Discrete Models with Multiple Binary Latent Variables
Yuqi Gu
117
6
0
08 Mar 2022
On Testability of the Front-Door Model via Verma Constraints
Rohit Bhattacharya
Razieh Nabi
85
9
0
01 Mar 2022
Learning latent causal graphs via mixture oracles
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
CML
82
48
0
29 Jun 2021
Incorporating Causal Graphical Prior Knowledge into Predictive Modeling via Simple Data Augmentation
Takeshi Teshima
Masashi Sugiyama
CML
91
13
0
27 Feb 2021
Necessary and sufficient graphical conditions for optimal adjustment sets in causal graphical models with hidden variables
Jakob Runge
CML
94
27
0
20 Feb 2021
Integer Programming for Causal Structure Learning in the Presence of Latent Variables
Rui Chen
S. Dash
Tian Gao
CML
86
15
0
05 Feb 2021
Differentiable Causal Discovery Under Unmeasured Confounding
Rohit Bhattacharya
Tushar Nagarajan
Daniel Malinsky
I. Shpitser
CML
80
61
0
14 Oct 2020
Path Dependent Structural Equation Models
R. Srinivasan
Jaron J. R. Lee
Rohit Bhattacharya
Narges Ahmidi
I. Shpitser
CML
63
4
0
24 Aug 2020
Faster algorithms for Markov equivalence
Zhongyi Hu
R. Evans
82
12
0
05 Jul 2020
Full Law Identification In Graphical Models Of Missing Data: Completeness Results
Razieh Nabi
Rohit Bhattacharya
I. Shpitser
61
50
0
10 Apr 2020
Efficient adjustment sets for population average treatment effect estimation in non-parametric causal graphical models
A. Rotnitzky
Ezequiel Smucler
CML
96
31
0
01 Dec 2019
Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders
Patrick Forré
Joris M. Mooij
CML
92
56
0
09 Jul 2018
Structural Learning of Multivariate Regression Chain Graphs via Decomposition
Mohammad Ali Javidian
Marco Valtorta
BDL
CML
30
3
0
03 Jun 2018
On the Properties of MVR Chain Graphs
Mohammad Ali Javidian
Marco Valtorta
44
6
0
09 Mar 2018
Markov equivalence of marginalized local independence graphs
Søren Wengel Mogensen
N. Hansen
43
1
0
27 Feb 2018
Smooth, identifiable supermodels of discrete DAG models with latent variables
R. Evans
Thomas S. Richardson
CML
72
22
0
21 Nov 2015
Margins of discrete Bayesian networks
R. Evans
106
69
0
09 Jan 2015
Graphs for margins of Bayesian networks
R. Evans
CML
UQCV
115
92
0
08 Aug 2014
Marginalization and Conditioning for LWF Chain Graphs
Kayvan Sadeghi
89
15
0
28 May 2014
1