Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1302.2752
Cited By
v1
v2
v3 (latest)
Adaptive Metric Dimensionality Reduction
Theoretical Computer Science (TCS), 2013
12 February 2013
Lee-Ad Gottlieb
A. Kontorovich
Robert Krauthgamer
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Adaptive Metric Dimensionality Reduction"
25 / 25 papers shown
Title
Private Evolution Converges
Tomás González
Giulia Fanti
Aaditya Ramdas
180
0
0
10 Jun 2025
Why and When Deep is Better than Shallow: An Implementation-Agnostic State-Transition View of Depth Supremacy
Sho Sonoda
Yuka Hashimoto
Isao Ishikawa
Masahiro Ikeda
211
0
0
21 May 2025
Fine-Grained Uncertainty Quantification via Collisions
Jesse Friedbaum
Sudarshan Adiga
Ravi Tandon
478
0
0
18 Nov 2024
Trustworthy Actionable Perturbations
International Conference on Machine Learning (ICML), 2024
Jesse Friedbaum
Sudarshan Adiga
Ravi Tandon
AAML
228
2
0
18 May 2024
Covering Number of Real Algebraic Varieties and Beyond: Improved Bounds and Applications
Yifan Zhang
Joe Kileel
371
6
0
09 Nov 2023
Efficient Agnostic Learning with Average Smoothness
International Conference on Algorithmic Learning Theory (ALT), 2023
Steve Hanneke
A. Kontorovich
Guy Kornowski
130
2
0
29 Sep 2023
Optimal Scalarizations for Sublinear Hypervolume Regret
Neural Information Processing Systems (NeurIPS), 2023
Qiuying Zhang
136
2
0
06 Jul 2023
Covariate balancing using the integral probability metric for causal inference
International Conference on Machine Learning (ICML), 2023
Insung Kong
Yuha Park
Joonhyuk Jung
Kwonsang Lee
Yongdai Kim
211
8
0
23 May 2023
Near-optimal learning with average Hölder smoothness
Neural Information Processing Systems (NeurIPS), 2023
Steve Hanneke
A. Kontorovich
Guy Kornowski
133
5
0
12 Feb 2023
Algorithmically Effective Differentially Private Synthetic Data
Annual Conference Computational Learning Theory (COLT), 2023
Yi He
Roman Vershynin
Yizhe Zhu
SyDa
163
11
0
11 Feb 2023
Out-of-distributional risk bounds for neural operators with applications to the Helmholtz equation
Journal of Computational Physics (JCP), 2023
Jose Antonio Lara Benitez
Takashi Furuya
F. Faucher
Anastasis Kratsios
X. Tricoche
Maarten V. de Hoop
331
32
0
27 Jan 2023
Teacher Guided Training: An Efficient Framework for Knowledge Transfer
International Conference on Learning Representations (ICLR), 2022
Manzil Zaheer
A. S. Rawat
Seungyeon Kim
Chong You
Himanshu Jain
Andreas Veit
Rob Fergus
Surinder Kumar
VLM
151
1
0
14 Aug 2022
Non-Linear Spectral Dimensionality Reduction Under Uncertainty
Firas Laakom
Jenni Raitoharju
Nikolaos Passalis
Alexandros Iosifidis
Moncef Gabbouj
UD
109
0
0
09 Feb 2022
Intrinsic Dimension Estimation Using Wasserstein Distances
Journal of machine learning research (JMLR), 2021
Adam Block
Zeyu Jia
Yury Polyanskiy
Alexander Rakhlin
200
24
0
08 Jun 2021
Functions with average smoothness: structure, algorithms, and learning
Annual Conference Computational Learning Theory (COLT), 2020
Yair Ashlagi
Lee-Ad Gottlieb
A. Kontorovich
144
10
0
13 Jul 2020
Target-Embedding Autoencoders for Supervised Representation Learning
International Conference on Learning Representations (ICLR), 2020
Daniel Jarrett
M. Schaar
OOD
152
17
0
23 Jan 2020
Fast and Bayes-consistent nearest neighbors
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
K. Efremenko
A. Kontorovich
Moshe Noivirt
203
3
0
07 Oct 2019
Fréchet random forests for metric space valued regression with non euclidean predictors
L. Capitaine
Jérémie Bigot
R. Thiébaut
Robin Genuer
128
15
0
04 Jun 2019
Efficient Kirszbraun Extension with Applications to Regression
Mathematical programming (Math. Program.), 2019
Hanan Zaichyk
Armin Biess
A. Kontorovich
Yury Makarychev
70
3
0
28 May 2019
Nearest-Neighbor Sample Compression: Efficiency, Consistency, Infinite Dimensions
A. Kontorovich
Sivan Sabato
Roi Weiss
279
30
0
23 May 2017
Active Nearest-Neighbor Learning in Metric Spaces
A. Kontorovich
Sivan Sabato
Ruth Urner
693
36
0
22 May 2016
Foundations of Coupled Nonlinear Dimensionality Reduction
M. Mohri
Afshin Rostamizadeh
Dmitry Storcheus
129
13
0
29 Sep 2015
Near-optimal sample compression for nearest neighbors
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2014
Lee-Ad Gottlieb
A. Kontorovich
Pinhas Nisnevitch
524
48
0
13 Apr 2014
Maximum Margin Multiclass Nearest Neighbors
International Conference on Machine Learning (ICML), 2014
A. Kontorovich
Roi Weiss
281
32
0
30 Jan 2014
Efficient Regression in Metric Spaces via Approximate Lipschitz Extension
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2011
Lee-Ad Gottlieb
A. Kontorovich
Robert Krauthgamer
372
56
0
18 Nov 2011
1