Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1303.0383
Cited By
Local Gaussian process approximation for large computer experiments
2 March 2013
R. Gramacy
D. Apley
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Local Gaussian process approximation for large computer experiments"
21 / 21 papers shown
Title
Adaptive Replication Strategies in Trust-Region-Based Bayesian Optimization of Stochastic Functions
Mickael Binois
Jeffrey Larson
71
0
0
29 Apr 2025
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
F. Llorente
Luca Martino
Jesse Read
D. Delgado
OffRL
56
13
0
03 Jan 2025
When the whole is greater than the sum of its parts: Scaling black-box inference to large data settings through divide-and-conquer
Emily C. Hector
Amanda Lenzi
36
1
0
31 Dec 2024
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Yunyue Wei
Vincent Zhuang
Saraswati Soedarmadji
Yanan Sui
36
0
0
31 Dec 2024
Posterior Covariance Structures in Gaussian Processes
Difeng Cai
Edmond Chow
Yuanzhe Xi
24
2
0
14 Aug 2024
The inverse Kalman filter
X. Fang
Mengyang Gu
18
0
0
14 Jul 2024
Nearest Neighbors GParareal: Improving Scalability of Gaussian Processes for Parallel-in-Time Solvers
Guglielmo Gattiglio
Lyudmila Grigoryeva
M. Tamborrino
21
1
0
20 May 2024
Constraint-Guided Online Data Selection for Scalable Data-Driven Safety Filters in Uncertain Robotic Systems
Jason J. Choi
F. Castañeda
Wonsuhk Jung
Bike Zhang
Claire J. Tomlin
K. Sreenath
25
3
0
23 Nov 2023
A Global-Local Approximation Framework for Large-Scale Gaussian Process Modeling
Akhil Vakayil
Roshan Joseph
15
2
0
17 May 2023
Traffic State Estimation from Vehicle Trajectories with Anisotropic Gaussian Processes
Fan Wu
Zhanhong Cheng
Huiyu Chen
T. Qiu
Lijun Sun
18
3
0
04 Mar 2023
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
22
24
0
24 Jan 2023
Spatially scalable recursive estimation of Gaussian process terrain maps using local basis functions
Frida Viset
R. Helmons
Manon Kok
15
1
0
17 Oct 2022
Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
17
25
0
26 Jun 2021
Local approximate Gaussian process regression for data-driven constitutive laws: Development and comparison with neural networks
J. Fuhg
M. Marino
N. Bouklas
15
59
0
07 May 2021
mlOSP: Towards a Unified Implementation of Regression Monte Carlo Algorithms
M. Ludkovski
18
7
0
01 Dec 2020
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitioned Domains
M. Peruzzi
Sudipto Banerjee
Andrew O. Finley
22
52
0
25 Mar 2020
Iterative Construction of Gaussian Process Surrogate Models for Bayesian Inference
Leen Alawieh
J. Goodman
J. Bell
16
4
0
17 Nov 2019
Efficient algorithms for Bayesian Nearest Neighbor Gaussian Processes
Andrew O. Finley
A. Datta
B. Cook
Douglas C. Morton
Hans-Erik Andersen
Sudipto Banerjee
27
152
0
01 Feb 2017
Practical heteroskedastic Gaussian process modeling for large simulation experiments
M. Binois
R. Gramacy
M. Ludkovski
19
180
0
17 Nov 2016
Speeding up neighborhood search in local Gaussian process prediction
R. Gramacy
B. Haaland
25
49
0
30 Aug 2014
Massively parallel approximate Gaussian process regression
R. Gramacy
Jarad Niemi
R. Weiss
43
47
0
18 Oct 2013
1