Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1305.5826
Cited By
Parallel Gaussian Process Regression with Low-Rank Covariance Matrix Approximations
Conference on Uncertainty in Artificial Intelligence (UAI), 2013
24 May 2013
Jie Chen
Nannan Cao
K. H. Low
Ruofei Ouyang
C. Tan
Patrick Jaillet
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Parallel Gaussian Process Regression with Low-Rank Covariance Matrix Approximations"
28 / 28 papers shown
Title
Bayesian Optimization for Dynamic Pricing and Learning
Anush Anand
Pranav Agrawal
Tejas Bodas
118
0
0
14 Oct 2025
Safe and Adaptive Decision-Making for Optimization of Safety-Critical Systems: The ARTEO Algorithm
Buse Sibel Korkmaz
Marta Zagórowska
Mehmet Mercangöz
170
2
0
10 Nov 2022
Low-Precision Arithmetic for Fast Gaussian Processes
Conference on Uncertainty in Artificial Intelligence (UAI), 2022
Wesley J. Maddox
Andres Potapczynski
A. Wilson
138
14
0
14 Jul 2022
Bayesian Optimization under Stochastic Delayed Feedback
International Conference on Machine Learning (ICML), 2022
Arun Verma
Zhongxiang Dai
Bryan Kian Hsiang Low
218
15
0
19 Jun 2022
Convolutional Normalizing Flows for Deep Gaussian Processes
IEEE International Joint Conference on Neural Network (IJCNN), 2021
Haibin Yu
Dapeng Liu
Yizhou Chen
K. H. Low
Patrick Jaillet
BDL
176
6
0
17 Apr 2021
Revisiting the Sample Complexity of Sparse Spectrum Approximation of Gaussian Processes
Neural Information Processing Systems (NeurIPS), 2020
Q. Hoang
T. Hoang
Hai Pham
David P. Woodruff
158
6
0
17 Nov 2020
Variational Bayesian Unlearning
Neural Information Processing Systems (NeurIPS), 2020
Q. Nguyen
Bryan Kian Hsiang Low
Patrick Jaillet
BDL
MU
236
151
0
24 Oct 2020
Private Outsourced Bayesian Optimization
International Conference on Machine Learning (ICML), 2020
D. Kharkovskii
Zhongxiang Dai
K. H. Low
184
25
0
24 Oct 2020
Federated Bayesian Optimization via Thompson Sampling
Neural Information Processing Systems (NeurIPS), 2020
Zhongxiang Dai
K. H. Low
Patrick Jaillet
FedML
415
132
0
20 Oct 2020
Locally induced Gaussian processes for large-scale simulation experiments
Statistics and computing (Stat. Comput.), 2020
D. Cole
R. Christianson
R. Gramacy
251
23
0
28 Aug 2020
R2-B2: Recursive Reasoning-Based Bayesian Optimization for No-Regret Learning in Games
Zhongxiang Dai
Yizhou Chen
K. H. Low
Patrick Jaillet
Teck-Hua Ho
184
28
0
30 Jun 2020
Nonmyopic Gaussian Process Optimization with Macro-Actions
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
D. Kharkovskii
Chun Kai Ling
K. H. Low
196
18
0
22 Feb 2020
Scalable Variational Bayesian Kernel Selection for Sparse Gaussian Process Regression
AAAI Conference on Artificial Intelligence (AAAI), 2019
T. Teng
Jie Chen
Yehong Zhang
K. H. Low
BDL
184
24
0
05 Dec 2019
Implicit Posterior Variational Inference for Deep Gaussian Processes
Neural Information Processing Systems (NeurIPS), 2019
Haibin Yu
Yizhou Chen
Zhongxiang Dai
K. H. Low
Patrick Jaillet
205
44
0
26 Oct 2019
Sparse Additive Gaussian Process Regression
Journal of machine learning research (JMLR), 2019
Hengrui Luo
Giovanni Nattino
M. Pratola
244
18
0
23 Aug 2019
When Gaussian Process Meets Big Data: A Review of Scalable GPs
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2018
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
395
801
0
03 Jul 2018
Collective Online Learning of Gaussian Processes in Massive Multi-Agent Systems
T. Hoang
Q. Hoang
K. H. Low
Jonathan P. How
201
6
0
23 May 2018
Decentralized High-Dimensional Bayesian Optimization with Factor Graphs
T. Hoang
Q. Hoang
Ruofei Ouyang
K. H. Low
219
58
0
19 Nov 2017
Gaussian Process Decentralized Data Fusion Meets Transfer Learning in Large-Scale Distributed Cooperative Perception
Ruofei Ouyang
K. H. Low
FedML
168
26
0
16 Nov 2017
Stochastic Variational Inference for Bayesian Sparse Gaussian Process Regression
Haibin Yu
T. Hoang
K. H. Low
Patrick Jaillet
BDL
339
24
0
01 Nov 2017
Forecasting of commercial sales with large scale Gaussian Processes
Rodrigo Rivera
Evgeny Burnaev
141
21
0
16 Sep 2017
Patchwork Kriging for Large-scale Gaussian Process Regression
Journal of machine learning research (JMLR), 2017
Chiwoo Park
D. Apley
217
80
0
23 Jan 2017
A Generalized Stochastic Variational Bayesian Hyperparameter Learning Framework for Sparse Spectrum Gaussian Process Regression
Q. Hoang
T. Hoang
K. H. Low
162
40
0
18 Nov 2016
Near-Optimal Active Learning of Multi-Output Gaussian Processes
Yehong Zhang
T. Hoang
K. H. Low
Mohan Kankanhalli
166
39
0
21 Nov 2015
Gaussian Process Planning with Lipschitz Continuous Reward Functions: Towards Unifying Bayesian Optimization, Active Learning, and Beyond
Chun Kai Ling
K. H. Low
Patrick Jaillet
163
79
0
21 Nov 2015
Identifying Reliable Annotations for Large Scale Image Segmentation
Alexander Kolesnikov
Christoph H. Lampert
106
0
0
28 Apr 2015
Parallel Gaussian Process Regression for Big Data: Low-Rank Representation Meets Markov Approximation
AAAI Conference on Artificial Intelligence (AAAI), 2014
K. H. Low
J. Yu
Jie Chen
Patrick Jaillet
166
54
0
17 Nov 2014
GP-Localize: Persistent Mobile Robot Localization using Online Sparse Gaussian Process Observation Model
AAAI Conference on Artificial Intelligence (AAAI), 2014
Nuo Xu
K. H. Low
Jie Chen
Keng Kiat Lim
Etkin Baris Ozgul
230
49
0
21 Apr 2014
1