ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1306.0186
  4. Cited By
RNADE: The real-valued neural autoregressive density-estimator
v1v2 (latest)

RNADE: The real-valued neural autoregressive density-estimator

Neural Information Processing Systems (NeurIPS), 2013
2 June 2013
Benigno Uria
Iain Murray
Hugo Larochelle
ArXiv (abs)PDFHTML

Papers citing "RNADE: The real-valued neural autoregressive density-estimator"

50 / 150 papers shown
Title
Model-based micro-data reinforcement learning: what are the crucial
  model properties and which model to choose?
Model-based micro-data reinforcement learning: what are the crucial model properties and which model to choose?International Conference on Learning Representations (ICLR), 2021
Jun Yao
Gabriel Hurtado
Albert Thomas
145
13
0
24 Jul 2021
Symmetric Wasserstein Autoencoders
Symmetric Wasserstein Autoencoders
S. Sun
Hong Guo
DiffMGAN
168
0
0
24 Jun 2021
Low-rank Characteristic Tensor Density Estimation Part II: Compression
  and Latent Density Estimation
Low-rank Characteristic Tensor Density Estimation Part II: Compression and Latent Density EstimationIEEE Transactions on Signal Processing (IEEE TSP), 2021
Magda Amiridi
Nikos Kargas
N. Sidiropoulos
170
15
0
20 Jun 2021
On Memorization in Probabilistic Deep Generative Models
On Memorization in Probabilistic Deep Generative ModelsNeural Information Processing Systems (NeurIPS), 2021
G. V. D. Burg
Christopher K. I. Williams
TDI
282
79
0
06 Jun 2021
Deconvolutional Density Network: Modeling Free-Form Conditional
  Distributions
Deconvolutional Density Network: Modeling Free-Form Conditional DistributionsAAAI Conference on Artificial Intelligence (AAAI), 2021
Bing Chen
Mazharul Islam
Jisuo Gao
Lin Wang
BDLCML
241
8
0
29 May 2021
Parallel and Flexible Sampling from Autoregressive Models via Langevin
  Dynamics
Parallel and Flexible Sampling from Autoregressive Models via Langevin DynamicsInternational Conference on Machine Learning (ICML), 2021
V. Jayaram
John Thickstun
DiffM
192
27
0
17 May 2021
Improved Autoregressive Modeling with Distribution Smoothing
Improved Autoregressive Modeling with Distribution SmoothingInternational Conference on Learning Representations (ICLR), 2021
Chenlin Meng
Jiaming Song
Yang Song
Shengjia Zhao
Stefano Ermon
DiffM
139
24
0
28 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive ModelsIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLMTPM
701
623
0
08 Mar 2021
Manifold Density Estimation via Generalized Dequantization
Manifold Density Estimation via Generalized Dequantization
James A. Brofos
Marcus A. Brubaker
Roy R. Lederman
252
5
0
14 Feb 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical
  Distributions
Argmax Flows and Multinomial Diffusion: Learning Categorical DistributionsNeural Information Processing Systems (NeurIPS), 2021
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
604
557
0
10 Feb 2021
Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC
Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMCInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2021
P. Jaini
Didrik Nielsen
Max Welling
BDL
206
10
0
04 Feb 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Maximum Likelihood Training of Score-Based Diffusion ModelsNeural Information Processing Systems (NeurIPS), 2021
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
753
792
0
22 Jan 2021
SceneGen: Learning to Generate Realistic Traffic Scenes
SceneGen: Learning to Generate Realistic Traffic ScenesComputer Vision and Pattern Recognition (CVPR), 2021
Shuhan Tan
K. Wong
Shenlong Wang
S. Manivasagam
Mengye Ren
R. Urtasun
203
130
0
16 Jan 2021
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them
  on Images
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on ImagesInternational Conference on Learning Representations (ICLR), 2020
R. Child
BDLVLM
432
380
0
20 Nov 2020
Learning for Integer-Constrained Optimization through Neural Networks
  with Limited Training
Learning for Integer-Constrained Optimization through Neural Networks with Limited Training
Zhou Zhou
Shashank Jere
Lizhong Zheng
Lingjia Liu
168
7
0
10 Nov 2020
Wave-Tacotron: Spectrogram-free end-to-end text-to-speech synthesis
Wave-Tacotron: Spectrogram-free end-to-end text-to-speech synthesis
Ron J. Weiss
RJ Skerry-Ryan
Eric Battenberg
Soroosh Mariooryad
Diederik P. Kingma
183
106
0
06 Nov 2020
Imitation with Neural Density Models
Imitation with Neural Density ModelsNeural Information Processing Systems (NeurIPS), 2020
Kuno Kim
Akshat Jindal
Yang Song
Jiaming Song
Yanan Sui
Stefano Ermon
220
14
0
19 Oct 2020
On the representation and learning of monotone triangular transport maps
On the representation and learning of monotone triangular transport mapsFoundations of Computational Mathematics (FoCM), 2020
Ricardo Baptista
Youssef Marzouk
O. Zahm
191
62
0
22 Sep 2020
Low-rank Characteristic Tensor Density Estimation Part I: Foundations
Low-rank Characteristic Tensor Density Estimation Part I: FoundationsIEEE Transactions on Signal Processing (TSP), 2020
Magda Amiridi
Nikos Kargas
N. Sidiropoulos
213
26
0
27 Aug 2020
Estimating Causal Effects with the Neural Autoregressive Density
  Estimator
Estimating Causal Effects with the Neural Autoregressive Density Estimator
Sergio Garrido
S. Borysov
Jeppe Rich
Francisco Câmara Pereira
CML
172
9
0
17 Aug 2020
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
Didrik Nielsen
P. Jaini
Emiel Hoogeboom
Ole Winther
Max Welling
TPMBDLDRL
310
95
0
06 Jul 2020
Deep neural networks for the evaluation and design of photonic devices
Deep neural networks for the evaluation and design of photonic devices
Jiaqi Jiang
Ming-Keh Chen
Jonathan A. Fan
253
459
0
30 Jun 2020
High Resolution Zero-Shot Domain Adaptation of Synthetically Rendered
  Face Images
High Resolution Zero-Shot Domain Adaptation of Synthetically Rendered Face Images
Stephan J. Garbin
Marek Kowalski
Matthew W. Johnson
Jamie Shotton
3DH
284
9
0
26 Jun 2020
Fast, Accurate, and Simple Models for Tabular Data via Augmented
  Distillation
Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation
Rasool Fakoor
Jonas W. Mueller
Nick Erickson
Pratik Chaudhari
Alex Smola
161
62
0
25 Jun 2020
Locally Masked Convolution for Autoregressive Models
Locally Masked Convolution for Autoregressive Models
Ajay Jain
Pieter Abbeel
Deepak Pathak
DiffMOffRL
178
32
0
22 Jun 2020
IDF++: Analyzing and Improving Integer Discrete Flows for Lossless
  Compression
IDF++: Analyzing and Improving Integer Discrete Flows for Lossless Compression
Rianne van den Berg
A. Gritsenko
Mostafa Dehghani
C. Sønderby
Tim Salimans
296
62
0
22 Jun 2020
Categorical Normalizing Flows via Continuous Transformations
Categorical Normalizing Flows via Continuous Transformations
Phillip Lippe
E. Gavves
BDL
345
49
0
17 Jun 2020
Density Deconvolution with Normalizing Flows
Density Deconvolution with Normalizing Flows
Tim Dockhorn
James A. Ritchie
Yaoliang Yu
Iain Murray
DRL
166
6
0
16 Jun 2020
Why Normalizing Flows Fail to Detect Out-of-Distribution Data
Why Normalizing Flows Fail to Detect Out-of-Distribution Data
Polina Kirichenko
Pavel Izmailov
A. Wilson
OODD
248
313
0
15 Jun 2020
Decoupling Global and Local Representations via Invertible Generative
  Flows
Decoupling Global and Local Representations via Invertible Generative Flows
Xuezhe Ma
X. Kong
Shanghang Zhang
Eduard H. Hovy
DRL
174
3
0
12 Apr 2020
Noise Estimation Using Density Estimation for Self-Supervised Multimodal
  Learning
Noise Estimation Using Density Estimation for Self-Supervised Multimodal LearningAAAI Conference on Artificial Intelligence (AAAI), 2020
Elad Amrani
Rami Ben-Ari
Daniel Rotman
A. Bronstein
316
129
0
06 Mar 2020
Gradient Boosted Normalizing Flows
Gradient Boosted Normalizing Flows
Robert Giaquinto
A. Banerjee
BDLDRL
233
1
0
27 Feb 2020
Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow
Closing the Dequantization Gap: PixelCNN as a Single-Layer FlowNeural Information Processing Systems (NeurIPS), 2020
Didrik Nielsen
Ole Winther
MQ
422
13
0
06 Feb 2020
Fully-hierarchical fine-grained prosody modeling for interpretable
  speech synthesis
Fully-hierarchical fine-grained prosody modeling for interpretable speech synthesisIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020
Guangzhi Sun
Yu Zhang
Ron J. Weiss
Yuanbin Cao
Heiga Zen
Yonghui Wu
168
130
0
06 Feb 2020
Learning Discrete Distributions by Dequantization
Learning Discrete Distributions by Dequantization
Emiel Hoogeboom
Taco S. Cohen
Jakub M. Tomczak
DRL
163
36
0
30 Jan 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and InferenceJournal of machine learning research (JMLR), 2019
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
696
2,052
0
05 Dec 2019
Histogram Transform Ensembles for Density Estimation
Histogram Transform Ensembles for Density Estimation
H. Hang
103
0
0
24 Nov 2019
Neural Density Estimation and Likelihood-free Inference
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDLDRL
195
51
0
29 Oct 2019
Marginally-calibrated deep distributional regression
Marginally-calibrated deep distributional regressionJournal of Computational And Graphical Statistics (JCGS), 2019
Nadja Klein
David J. Nott
M. Smith
UQCV
306
14
0
26 Aug 2019
Likelihood Contribution based Multi-scale Architecture for Generative
  Flows
Likelihood Contribution based Multi-scale Architecture for Generative Flows
Hari Prasanna Das
Pieter Abbeel
C. Spanos
DRLAI4CE
160
5
0
05 Aug 2019
Neural Spline Flows
Neural Spline FlowsNeural Information Processing Systems (NeurIPS), 2019
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
971
891
0
10 Jun 2019
Best-scored Random Forest Density Estimation
Best-scored Random Forest Density Estimation
H. Hang
Hongwei Wen
99
1
0
09 May 2019
Supervised Anomaly Detection based on Deep Autoregressive Density
  Estimators
Supervised Anomaly Detection based on Deep Autoregressive Density Estimators
Tomoharu Iwata
Yuki Yamanaka
118
13
0
12 Apr 2019
Autoregressive Energy Machines
Autoregressive Energy Machines
C. Nash
Conor Durkan
106
56
0
11 Apr 2019
Nonparametric Density Estimation for High-Dimensional Data - Algorithms
  and Applications
Nonparametric Density Estimation for High-Dimensional Data - Algorithms and Applications
Zhipeng Wang
D. W. Scott
221
77
0
30 Mar 2019
General Probabilistic Surface Optimization and Log Density Estimation
General Probabilistic Surface Optimization and Log Density Estimation
Dmitry Kopitkov
Vadim Indelman
337
1
0
25 Mar 2019
Multi-Attribute Selectivity Estimation Using Deep Learning
Multi-Attribute Selectivity Estimation Using Deep Learning
Shohedul Hasan
Saravanan Thirumuruganathan
Jees Augustine
Nick Koudas
Gautam Das
210
26
0
24 Mar 2019
Implicit Generation and Generalization in Energy-Based Models
Implicit Generation and Generalization in Energy-Based Models
Yilun Du
Igor Mordatch
BDLDiffM
152
40
0
20 Mar 2019
Approximating exponential family models (not single distributions) with
  a two-network architecture
Approximating exponential family models (not single distributions) with a two-network architecture
Sean R. Bittner
John P. Cunningham
81
4
0
18 Mar 2019
Unpriortized Autoencoder For Image Generation
Unpriortized Autoencoder For Image GenerationInternational Conference on Information Photonics (ICIP), 2019
Jaeyoung Yoo
Hojun Lee
Nojun Kwak
SyDaSSLGANDRL
171
4
0
12 Feb 2019
Previous
123
Next