Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1306.1043
Cited By
v1
v2 (latest)
Structural Intervention Distance (SID) for Evaluating Causal Graphs
5 June 2013
J. Peters
Peter Buhlmann
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Structural Intervention Distance (SID) for Evaluating Causal Graphs"
19 / 19 papers shown
Title
CausalDynamics: A large-scale benchmark for structural discovery of dynamical causal models
Benjamin Herdeanu
Juan Nathaniel
Carla Roesch
Jatan Buch
Gregor Ramien
Johannes Haux
Pierre Gentine
CML
AI4CE
102
0
0
22 May 2025
Towards Federated Bayesian Network Structure Learning with Continuous Optimization
Ignavier Ng
Kun Zhang
FedML
91
38
0
18 Oct 2021
A survey of Bayesian Network structure learning
N. K. Kitson
Anthony C. Constantinou
Zhi-gao Guo
Yang Liu
Kiattikun Chobtham
CML
106
198
0
23 Sep 2021
Efficient Neural Causal Discovery without Acyclicity Constraints
Phillip Lippe
Taco S. Cohen
E. Gavves
CML
96
72
0
22 Jul 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
147
305
0
03 Mar 2021
On the Convergence of Continuous Constrained Optimization for Structure Learning
Ignavier Ng
Sébastien Lachapelle
Nan Rosemary Ke
Simon Lacoste-Julien
Kun Zhang
105
38
0
23 Nov 2020
Differentiable Causal Discovery from Interventional Data
P. Brouillard
Sébastien Lachapelle
Alexandre Lacoste
Simon Lacoste-Julien
Alexandre Drouin
CML
87
191
0
03 Jul 2020
On the Role of Sparsity and DAG Constraints for Learning Linear DAGs
Ignavier Ng
AmirEmad Ghassami
Kun Zhang
CML
87
189
0
17 Jun 2020
Approximate Causal Abstraction
Sander Beckers
F. Eberhardt
Joseph Y. Halpern
98
53
0
27 Jun 2019
Gradient-Based Neural DAG Learning
Sébastien Lachapelle
P. Brouillard
T. Deleu
Simon Lacoste-Julien
BDL
CML
105
276
0
05 Jun 2019
Evaluating structure learning algorithms with a balanced scoring function
Anthony C. Constantinou
CML
89
18
0
29 May 2019
Learning Functional Causal Models with Generative Neural Networks
Hugo Jair Escalante
Sergio Escalera
Xavier Baro
Isabelle M Guyon
Umut Güçlü
Marcel van Gerven
CML
BDL
105
108
0
15 Sep 2017
Comparative Benchmarking of Causal Discovery Techniques
Karamjit Singh
Garima Gupta
Vartika Tewari
Gautam M. Shroff
CML
107
13
0
18 Aug 2017
Kernel-based Tests for Joint Independence
Niklas Pfister
Peter Buhlmann
Bernhard Schölkopf
J. Peters
93
186
0
01 Mar 2016
A Complete Generalized Adjustment Criterion
Emilija Perković
J. Textor
M. Kalisch
Marloes H. Maathuis
OffRL
CML
72
73
0
06 Jul 2015
Partition MCMC for inference on acyclic digraphs
Jack Kuipers
G. Moffa
125
92
0
20 Apr 2015
Exact Estimation of Multiple Directed Acyclic Graphs
Chris J. Oates
Jim Q. Smith
S. Mukherjee
James Cussens
81
40
0
04 Apr 2014
CAM: Causal additive models, high-dimensional order search and penalized regression
Peter Buhlmann
J. Peters
J. Ernest
CML
160
326
0
06 Oct 2013
Causal Discovery with Continuous Additive Noise Models
Jonas Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
CML
157
577
0
26 Sep 2013
1