ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1306.1043
  4. Cited By
Structural Intervention Distance (SID) for Evaluating Causal Graphs
v1v2 (latest)

Structural Intervention Distance (SID) for Evaluating Causal Graphs

5 June 2013
J. Peters
Peter Buhlmann
    CML
ArXiv (abs)PDFHTML

Papers citing "Structural Intervention Distance (SID) for Evaluating Causal Graphs"

19 / 19 papers shown
Title
CausalDynamics: A large-scale benchmark for structural discovery of dynamical causal models
CausalDynamics: A large-scale benchmark for structural discovery of dynamical causal models
Benjamin Herdeanu
Juan Nathaniel
Carla Roesch
Jatan Buch
Gregor Ramien
Johannes Haux
Pierre Gentine
CMLAI4CE
102
0
0
22 May 2025
Towards Federated Bayesian Network Structure Learning with Continuous
  Optimization
Towards Federated Bayesian Network Structure Learning with Continuous Optimization
Ignavier Ng
Kun Zhang
FedML
91
38
0
18 Oct 2021
A survey of Bayesian Network structure learning
A survey of Bayesian Network structure learning
N. K. Kitson
Anthony C. Constantinou
Zhi-gao Guo
Yang Liu
Kiattikun Chobtham
CML
106
198
0
23 Sep 2021
Efficient Neural Causal Discovery without Acyclicity Constraints
Efficient Neural Causal Discovery without Acyclicity Constraints
Phillip Lippe
Taco S. Cohen
E. Gavves
CML
96
72
0
22 Jul 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
147
305
0
03 Mar 2021
On the Convergence of Continuous Constrained Optimization for Structure
  Learning
On the Convergence of Continuous Constrained Optimization for Structure Learning
Ignavier Ng
Sébastien Lachapelle
Nan Rosemary Ke
Simon Lacoste-Julien
Kun Zhang
105
38
0
23 Nov 2020
Differentiable Causal Discovery from Interventional Data
Differentiable Causal Discovery from Interventional Data
P. Brouillard
Sébastien Lachapelle
Alexandre Lacoste
Simon Lacoste-Julien
Alexandre Drouin
CML
87
191
0
03 Jul 2020
On the Role of Sparsity and DAG Constraints for Learning Linear DAGs
On the Role of Sparsity and DAG Constraints for Learning Linear DAGs
Ignavier Ng
AmirEmad Ghassami
Kun Zhang
CML
87
189
0
17 Jun 2020
Approximate Causal Abstraction
Approximate Causal Abstraction
Sander Beckers
F. Eberhardt
Joseph Y. Halpern
98
53
0
27 Jun 2019
Gradient-Based Neural DAG Learning
Gradient-Based Neural DAG Learning
Sébastien Lachapelle
P. Brouillard
T. Deleu
Simon Lacoste-Julien
BDLCML
105
276
0
05 Jun 2019
Evaluating structure learning algorithms with a balanced scoring
  function
Evaluating structure learning algorithms with a balanced scoring function
Anthony C. Constantinou
CML
89
18
0
29 May 2019
Learning Functional Causal Models with Generative Neural Networks
Learning Functional Causal Models with Generative Neural Networks
Hugo Jair Escalante
Sergio Escalera
Xavier Baro
Isabelle M Guyon
Umut Güçlü
Marcel van Gerven
CMLBDL
105
108
0
15 Sep 2017
Comparative Benchmarking of Causal Discovery Techniques
Comparative Benchmarking of Causal Discovery Techniques
Karamjit Singh
Garima Gupta
Vartika Tewari
Gautam M. Shroff
CML
107
13
0
18 Aug 2017
Kernel-based Tests for Joint Independence
Kernel-based Tests for Joint Independence
Niklas Pfister
Peter Buhlmann
Bernhard Schölkopf
J. Peters
93
186
0
01 Mar 2016
A Complete Generalized Adjustment Criterion
A Complete Generalized Adjustment Criterion
Emilija Perković
J. Textor
M. Kalisch
Marloes H. Maathuis
OffRLCML
72
73
0
06 Jul 2015
Partition MCMC for inference on acyclic digraphs
Partition MCMC for inference on acyclic digraphs
Jack Kuipers
G. Moffa
125
92
0
20 Apr 2015
Exact Estimation of Multiple Directed Acyclic Graphs
Exact Estimation of Multiple Directed Acyclic Graphs
Chris J. Oates
Jim Q. Smith
S. Mukherjee
James Cussens
81
40
0
04 Apr 2014
CAM: Causal additive models, high-dimensional order search and penalized
  regression
CAM: Causal additive models, high-dimensional order search and penalized regression
Peter Buhlmann
J. Peters
J. Ernest
CML
160
326
0
06 Oct 2013
Causal Discovery with Continuous Additive Noise Models
Causal Discovery with Continuous Additive Noise Models
Jonas Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
CML
157
577
0
26 Sep 2013
1