Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1306.1091
Cited By
Deep Generative Stochastic Networks Trainable by Backprop
5 June 2013
Yoshua Bengio
Eric Thibodeau-Laufer
Guillaume Alain
J. Yosinski
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Generative Stochastic Networks Trainable by Backprop"
20 / 170 papers shown
Title
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
23
3,246
0
05 Dec 2014
From neural PCA to deep unsupervised learning
Harri Valpola
BDL
38
184
0
28 Nov 2014
Learning to Generate Chairs, Tables and Cars with Convolutional Networks
Alexey Dosovitskiy
Jost Tobias Springenberg
Maxim Tatarchenko
Thomas Brox
GAN
27
676
0
21 Nov 2014
Conditional Generative Adversarial Nets
M. Berk Mirza
Simon Osindero
GAN
SyDa
AI4CE
106
10,329
0
06 Nov 2014
Fast Learning of Relational Dependency Networks
Oliver Schulte
Zhensong Qian
A. Kirkpatrick
Xiaoqian Yin
Yan Lindsay Sun
GNN
25
12
0
28 Oct 2014
On the Equivalence Between Deep NADE and Generative Stochastic Networks
L. Yao
Sherjil Ozair
Kyunghyun Cho
Yoshua Bengio
BDL
25
9
0
02 Sep 2014
How Auto-Encoders Could Provide Credit Assignment in Deep Networks via Target Propagation
Yoshua Bengio
42
181
0
29 Jul 2014
Generative Adversarial Networks
Ian Goodfellow
Jean Pouget-Abadie
M. Berk Mirza
Bing Xu
David Warde-Farley
Sherjil Ozair
Aaron Courville
Yoshua Bengio
GAN
97
2,183
0
10 Jun 2014
Variational inference of latent state sequences using Recurrent Networks
Justin Bayer
Christian Osendorfer
DRL
BDL
45
1
0
06 Jun 2014
Is Joint Training Better for Deep Auto-Encoders?
Yingbo Zhou
Devansh Arpit
Ifeoma Nwogu
V. Govindaraju
47
2
0
06 May 2014
Deep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure Prediction
Jian Zhou
O. Troyanskaya
51
145
0
06 Mar 2014
Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets
Diederik P. Kingma
Max Welling
BDL
38
61
0
03 Feb 2014
Improving Deep Neural Networks with Probabilistic Maxout Units
Jost Tobias Springenberg
Martin Riedmiller
BDL
OOD
50
101
0
20 Dec 2013
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
39
17,001
0
20 Dec 2013
Multimodal Transitions for Generative Stochastic Networks
Sherjil Ozair
L. Yao
Yoshua Bengio
41
10
0
19 Dec 2013
Bounding the Test Log-Likelihood of Generative Models
Yoshua Bengio
L. Yao
Kyunghyun Cho
TPM
36
22
0
24 Nov 2013
Understanding Dropout: Training Multi-Layer Perceptrons with Auxiliary Independent Stochastic Neurons
Kyunghyun Cho
70
6
0
12 Jun 2013
Generalized Denoising Auto-Encoders as Generative Models
Yoshua Bengio
L. Yao
Guillaume Alain
Pascal Vincent
30
537
0
29 May 2013
Deep Learning of Representations: Looking Forward
Yoshua Bengio
57
680
0
02 May 2013
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,638
0
03 Jul 2012
Previous
1
2
3
4