Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1307.5302
Cited By
v1
v2
v3 (latest)
Kernel Adaptive Metropolis-Hastings
19 July 2013
Dino Sejdinovic
Heiko Strathmann
M. Garcia
Christophe Andrieu
Arthur Gretton
Re-assign community
ArXiv (abs)
PDF
HTML
Github (33★)
Papers citing
"Kernel Adaptive Metropolis-Hastings"
29 / 29 papers shown
Title
Stochastic mirror descent for nonparametric adaptive importance sampling
Pascal Bianchi
B. Delyon
Victor Priser
François Portier
58
3
0
20 Sep 2024
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Alexander Kolesov
Petr Mokrov
Igor Udovichenko
Milena Gazdieva
G. Pammer
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
OT
128
3
0
02 Oct 2023
Cyclical Kernel Adaptive Metropolis
J. Li
Yimeng Zeng
Wen-Ping Guo
18
0
0
29 Jun 2022
RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau
Robert Hu
Javier I. González
Dino Sejdinovic
FAtt
83
20
0
18 Oct 2021
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Chris Cannella
Vahid Tarokh
65
1
0
03 Jun 2021
Active Learning for Deep Gaussian Process Surrogates
Annie Sauer
R. Gramacy
D. Higdon
GP
AI4CE
71
92
0
15 Dec 2020
Adaptive Path Sampling in Metastable Posterior Distributions
Yuling Yao
Collin Cademartori
Aki Vehtari
Andrew Gelman
TPM
61
6
0
01 Sep 2020
Scalable Approximate Inference and Some Applications
Jun Han
BDL
52
1
0
07 Mar 2020
Hug and Hop: a discrete-time, non-reversible Markov chain Monte-Carlo algorithm
Matthew Ludkin
Chris Sherlock
42
8
0
29 Jul 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
99
16
0
27 May 2019
Adaptive MCMC via Combining Local Samplers
Kiarash Shaloudegi
András Gyorgy
64
1
0
11 Jun 2018
A Spectral Approach to Gradient Estimation for Implicit Distributions
Jiaxin Shi
Shengyang Sun
Jun Zhu
81
92
0
07 Jun 2018
Stein Variational Gradient Descent Without Gradient
J. Han
Qiang Liu
92
45
0
07 Jun 2018
Air Markov Chain Monte Carlo
C. Chimisov
Krzysztof Latuszynski
Gareth O. Roberts
82
11
0
28 Jan 2018
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
Stefan Klus
Ingmar Schuster
Krikamol Muandet
91
122
0
05 Dec 2017
Generalizing Hamiltonian Monte Carlo with Neural Networks
Daniel Levy
Matthew D. Hoffman
Jascha Narain Sohl-Dickstein
BDL
85
130
0
25 Nov 2017
Pseudo-extended Markov chain Monte Carlo
Christopher Nemeth
Fredrik Lindsten
Maurizio Filippone
J. Hensman
74
10
0
17 Aug 2017
Efficient and principled score estimation with Nyström kernel exponential families
Danica J. Sutherland
Heiko Strathmann
Michael Arbel
Arthur Gretton
84
24
0
23 May 2017
Active and Transfer Learning of Grasps by Kernel Adaptive MCMC
P. Zech
Hanchen Xiong
J. Piater
15
0
0
19 Nov 2016
Active and Transfer Learning of Grasps by Sampling from Demonstration
P. Zech
J. Piater
26
2
0
19 Nov 2016
Grasp Learning by Sampling from Demonstration
P. Zech
J. Piater
35
3
0
19 Nov 2016
Uncertain programming model for multi-item solid transportation problem
Hasan Dalman
140
64
0
31 May 2016
Kernel Sequential Monte Carlo
Ingmar Schuster
Heiko Strathmann
Brooks Paige
Dino Sejdinovic
BDL
43
7
0
11 Oct 2015
Gradient Importance Sampling
Ingmar Schuster
89
25
0
21 Jul 2015
Geometric ergodicity of the Random Walk Metropolis with position-dependent proposal covariance
Samuel Livingstone
167
11
0
21 Jul 2015
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families
Heiko Strathmann
Dino Sejdinovic
Samuel Livingstone
Z. Szabó
Arthur Gretton
BDL
100
76
0
08 Jun 2015
K2-ABC: Approximate Bayesian Computation with Kernel Embeddings
Mijung Park
Wittawat Jitkrittum
Dino Sejdinovic
74
10
0
09 Feb 2015
A Wild Bootstrap for Degenerate Kernel Tests
Kacper P. Chwialkowski
Dino Sejdinovic
Arthur Gretton
86
56
0
23 Aug 2014
Information-geometric Markov Chain Monte Carlo methods using Diffusions
Samuel Livingstone
Mark Girolami
DiffM
114
45
0
31 Mar 2014
1