Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1308.0689
Cited By
v1
v2
v3
v4 (latest)
Measure Transformer Semantics for Bayesian Machine Learning
3 August 2013
J. Borgström
Andrew D. Gordon
Michael Greenberg
J. Margetson
Jurgen Van Gael
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Measure Transformer Semantics for Bayesian Machine Learning"
9 / 9 papers shown
Title
Higher-Order Generalization Bounds: Learning Deep Probabilistic Programs via PAC-Bayes Objectives
J. Warrell
M. Gerstein
GP
49
1
0
30 Mar 2022
Mixed Nondeterministic-Probabilistic Automata: Blending graphical probabilistic models with nondeterminism
A. Benveniste
Jean-Baptiste Raclet
TPM
52
1
0
19 Jan 2022
Applied Measure Theory for Probabilistic Modeling
Chad Scherrer
Moritz Schauer
35
1
0
01 Oct 2021
Expectation Programming: Adapting Probabilistic Programming Systems to Estimate Expectations Efficiently
Tim Reichelt
Adam Goliñski
C.-H. Luke Ong
Tom Rainforth
TPM
60
0
0
09 Jun 2021
Learning Proposals for Probabilistic Programs with Inference Combinators
Sam Stites
Heiko Zimmermann
Hao Wu
Eli Sennesh
Jan-Willem van de Meent
NAI
84
16
0
01 Mar 2021
Probabilistic Programming with Densities in SlicStan: Efficient, Flexible and Deterministic
Maria I. Gorinova
Andrew D. Gordon
Charles Sutton
77
24
0
02 Nov 2018
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
88
200
0
27 Sep 2018
Deriving Probability Density Functions from Probabilistic Functional Programs
Sooraj Bhat
J. Borgström
Andrew D. Gordon
Claudio V. Russo
50
46
0
04 Apr 2017
Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints
S. Staton
Hongseok Yang
C. Heunen
Ohad Kammar
Frank Wood
89
136
0
19 Jan 2016
1