ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1308.0689
  4. Cited By
Measure Transformer Semantics for Bayesian Machine Learning
v1v2v3v4 (latest)

Measure Transformer Semantics for Bayesian Machine Learning

3 August 2013
J. Borgström
Andrew D. Gordon
Michael Greenberg
J. Margetson
Jurgen Van Gael
ArXiv (abs)PDFHTML

Papers citing "Measure Transformer Semantics for Bayesian Machine Learning"

9 / 9 papers shown
Title
Higher-Order Generalization Bounds: Learning Deep Probabilistic Programs
  via PAC-Bayes Objectives
Higher-Order Generalization Bounds: Learning Deep Probabilistic Programs via PAC-Bayes Objectives
J. Warrell
M. Gerstein
GP
49
1
0
30 Mar 2022
Mixed Nondeterministic-Probabilistic Automata: Blending graphical
  probabilistic models with nondeterminism
Mixed Nondeterministic-Probabilistic Automata: Blending graphical probabilistic models with nondeterminism
A. Benveniste
Jean-Baptiste Raclet
TPM
52
1
0
19 Jan 2022
Applied Measure Theory for Probabilistic Modeling
Applied Measure Theory for Probabilistic Modeling
Chad Scherrer
Moritz Schauer
35
1
0
01 Oct 2021
Expectation Programming: Adapting Probabilistic Programming Systems to
  Estimate Expectations Efficiently
Expectation Programming: Adapting Probabilistic Programming Systems to Estimate Expectations Efficiently
Tim Reichelt
Adam Goliñski
C.-H. Luke Ong
Tom Rainforth
TPM
60
0
0
09 Jun 2021
Learning Proposals for Probabilistic Programs with Inference Combinators
Learning Proposals for Probabilistic Programs with Inference Combinators
Sam Stites
Heiko Zimmermann
Hao Wu
Eli Sennesh
Jan-Willem van de Meent
NAI
84
16
0
01 Mar 2021
Probabilistic Programming with Densities in SlicStan: Efficient,
  Flexible and Deterministic
Probabilistic Programming with Densities in SlicStan: Efficient, Flexible and Deterministic
Maria I. Gorinova
Andrew D. Gordon
Charles Sutton
77
24
0
02 Nov 2018
An Introduction to Probabilistic Programming
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
88
200
0
27 Sep 2018
Deriving Probability Density Functions from Probabilistic Functional
  Programs
Deriving Probability Density Functions from Probabilistic Functional Programs
Sooraj Bhat
J. Borgström
Andrew D. Gordon
Claudio V. Russo
52
46
0
04 Apr 2017
Semantics for probabilistic programming: higher-order functions,
  continuous distributions, and soft constraints
Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints
S. Staton
Hongseok Yang
C. Heunen
Ohad Kammar
Frank Wood
92
136
0
19 Jan 2016
1