ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1309.6824
  4. Cited By
Learning Sparse Causal Models is not NP-hard

Learning Sparse Causal Models is not NP-hard

26 September 2013
Tom Claassen
Joris Mooij
Tom Heskes
    CML
ArXiv (abs)PDFHTML

Papers citing "Learning Sparse Causal Models is not NP-hard"

3 / 53 papers shown
Title
A generalized back-door criterion
A generalized back-door criterion
Marloes H. Maathuis
Diego Colombo
116
36
0
22 Jul 2013
Structural Intervention Distance (SID) for Evaluating Causal Graphs
Structural Intervention Distance (SID) for Evaluating Causal Graphs
J. Peters
Peter Buhlmann
CML
114
40
0
05 Jun 2013
Order-independent constraint-based causal structure learning
Order-independent constraint-based causal structure learning
Diego Colombo
Marloes H. Maathuis
CML
169
607
0
14 Nov 2012
Previous
12