Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.6824
Cited By
Learning Sparse Causal Models is not NP-hard
26 September 2013
Tom Claassen
Joris Mooij
Tom Heskes
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Sparse Causal Models is not NP-hard"
50 / 53 papers shown
Title
Constraint-based causal discovery with tiered background knowledge and latent variables in single or overlapping datasets
Christine W. Bang
Vanessa Didelez
CML
160
0
0
27 Mar 2025
Differentiable Causal Discovery For Latent Hierarchical Causal Models
Parjanya Prashant
Ignavier Ng
Kun Zhang
Zhen Zhang
CML
338
0
0
29 Nov 2024
Causal Discovery with Fewer Conditional Independence Tests
Kirankumar Shiragur
Jiaqi Zhang
Caroline Uhler
CML
56
2
0
03 Jun 2024
Local Causal Structure Learning in the Presence of Latent Variables
Feng Xie
Zheng Li
Peng Wu
Yan Zeng
Chunchen Liu
Zhi Geng
CML
90
2
0
25 May 2024
Local Causal Discovery for Structural Evidence of Direct Discrimination
Jacqueline R. M. A. Maasch
Kyra Gan
Violet Chen
Agni Orfanoudaki
Nil-Jana Akpinar
Fei Wang
68
2
0
23 May 2024
Membership Testing in Markov Equivalence Classes via Independence Query Oracles
Jiaqi Zhang
Kirankumar Shiragur
Caroline Uhler
CML
73
0
0
09 Mar 2024
Generalization of LiNGAM that allows confounding
Joe Suzuki
Tian-Le Yang
77
1
0
30 Jan 2024
Causal Interpretation of Self-Attention in Pre-Trained Transformers
R. Y. Rohekar
Yaniv Gurwicz
Shami Nisimov
MILM
60
19
0
31 Oct 2023
Local Discovery by Partitioning: Polynomial-Time Causal Discovery Around Exposure-Outcome Pairs
Jacqueline R. M. A. Maasch
Weishen Pan
Shantanu Gupta
Volodymyr Kuleshov
Kyra Gan
Fei Wang
81
7
0
25 Oct 2023
Human-in-the-Loop Causal Discovery under Latent Confounding using Ancestral GFlowNets
Tiago da Silva
Eliezer de Souza da Silva
Adèle H. Ribeiro
António Góis
Dominik Heider
Samuel Kaski
Diego Mesquita
CML
128
7
0
21 Sep 2023
s-ID: Causal Effect Identification in a Sub-Population
Amir Mohammad Abouei
Ehsan Mokhtarian
Negar Kiyavash
CML
53
3
0
05 Sep 2023
Generalized Independent Noise Condition for Estimating Causal Structure with Latent Variables
Feng Xie
Erdun Gao
Zhen Chen
Ruichu Cai
Clark Glymour
Zhi Geng
Kun Zhang
CML
46
7
0
13 Aug 2023
Front-door Adjustment Beyond Markov Equivalence with Limited Graph Knowledge
Abhin Shah
Karthikeyan Shanmugam
Murat Kocaoglu
CML
77
7
0
19 Jun 2023
DRCFS: Doubly Robust Causal Feature Selection
Francesco Quinzan
Ashkan Soleymani
Patrik Jaillet
C. Rojas
Stefan Bauer
107
13
0
12 Jun 2023
From Temporal to Contemporaneous Iterative Causal Discovery in the Presence of Latent Confounders
R. Y. Rohekar
Shami Nisimov
Yaniv Gurwicz
Gal Novik
CML
44
11
0
01 Jun 2023
Toward Falsifying Causal Graphs Using a Permutation-Based Test
Elias Eulig
Atalanti A. Mastakouri
Patrick Blobaum
Michael W. Hardt
Dominik Janzing
35
13
0
16 May 2023
Causal Reasoning in the Presence of Latent Confounders via Neural ADMG Learning
Matthew Ashman
Chao Ma
Agrin Hilmkil
Joel Jennings
Cheng Zhang
CML
AI4CE
93
10
0
22 Mar 2023
Weak equivalence of local independence graphs
Søren Wengel Mogensen
79
3
0
24 Feb 2023
Interpretability and causal discovery of the machine learning models to predict the production of CBM wells after hydraulic fracturing
Chao Min
Guo-quan Wen
Liang Gou
Xiaogang Li
Zhaozhong Yang
CML
39
12
0
21 Dec 2022
CLEAR: Causal Explanations from Attention in Neural Recommenders
Shami Nisimov
R. Y. Rohekar
Yaniv Gurwicz
G. Koren
Gal Novik
CML
30
6
0
07 Oct 2022
Novel Ordering-based Approaches for Causal Structure Learning in the Presence of Unobserved Variables
Ehsan Mokhtarian
M. Khorasani
Jalal Etesami
Negar Kiyavash
CML
83
7
0
14 Aug 2022
Causal Structure Learning: a Combinatorial Perspective
C. Squires
Caroline Uhler
CML
120
47
0
02 Jun 2022
Differentiable Causal Discovery Under Latent Interventions
Gonccalo R. A. Faria
André F. T. Martins
Mário A. T. Figueiredo
BDL
CML
OOD
89
23
0
04 Mar 2022
Local Constraint-Based Causal Discovery under Selection Bias
Philip Versteeg
Cheng Zhang
Joris M. Mooij
CML
58
14
0
03 Mar 2022
Learning Bayesian Networks in the Presence of Structural Side Information
Ehsan Mokhtarian
S. Akbari
Fatemeh Jamshidi
Jalal Etesami
Negar Kiyavash
67
16
0
20 Dec 2021
Iterative Causal Discovery in the Possible Presence of Latent Confounders and Selection Bias
R. Y. Rohekar
Shami Nisimov
Yaniv Gurwicz
Gal Novik
CML
173
26
0
07 Nov 2021
Recursive Causal Structure Learning in the Presence of Latent Variables and Selection Bias
S. Akbari
Ehsan Mokhtarian
AmirEmad Ghassami
Negar Kiyavash
CML
59
26
0
22 Oct 2021
A survey of Bayesian Network structure learning
N. K. Kitson
Anthony C. Constantinou
Zhi-gao Guo
Yang Liu
Kiattikun Chobtham
CML
106
198
0
23 Sep 2021
Improving Efficiency and Accuracy of Causal Discovery Using a Hierarchical Wrapper
Shami Nisimov
Yaniv Gurwicz
R. Y. Rohekar
Gal Novik
CML
TPM
18
6
0
11 Jul 2021
Identifiability of AMP chain graph models
Yuhao Wang
Arnab Bhattacharyya
CML
22
0
0
17 Jun 2021
Definite Non-Ancestral Relations and Structure Learning
Wenyu Chen
Mathias Drton
Ali Shojaie
CML
47
1
0
20 May 2021
Causal Inference in medicine and in health policy, a summary
Wenhao Zhang
Ramin Ramezani
A. Naeim
CML
OOD
76
6
0
10 May 2021
Deconfounded Score Method: Scoring DAGs with Dense Unobserved Confounding
Alexis Bellot
M. Schaar
CML
75
11
0
28 Mar 2021
FRITL: A Hybrid Method for Causal Discovery in the Presence of Latent Confounders
Wei Chen
Kun Zhang
Ruichu Cai
Erdun Gao
Joseph Ramsey
Zijian Li
Clark Glymour
CML
50
11
0
26 Mar 2021
Identification of Latent Variables From Graphical Model Residuals
B. Hayete
Fred Gruber
Anna Decker
R. Yan
CML
106
0
0
07 Jan 2021
A Single Iterative Step for Anytime Causal Discovery
R. Y. Rohekar
Yaniv Gurwicz
Shami Nisimov
Gal Novik
CML
26
1
0
14 Dec 2020
Causal Feature Selection via Orthogonal Search
Ashkan Soleymani
Anant Raj
Stefan Bauer
Bernhard Schölkopf
M. Besserve
CML
91
17
0
06 Jul 2020
Distributional robustness of K-class estimators and the PULSE
M. E. Jakobsen
J. Peters
OOD
70
29
0
07 May 2020
Constraint-Based Causal Discovery using Partial Ancestral Graphs in the presence of Cycles
Joris M. Mooij
Tom Claassen
93
42
0
01 May 2020
Towards unique and unbiased causal effect estimation from data with hidden variables
Debo Cheng
Jiuyong Li
Lin Liu
Kui Yu
T. Le
Jixue Liu
CML
55
0
0
24 Feb 2020
Ordering-Based Causal Structure Learning in the Presence of Latent Variables
D. Bernstein
Basil Saeed
C. Squires
Caroline Uhler
CML
71
42
0
20 Oct 2019
Switching Regression Models and Causal Inference in the Presence of Discrete Latent Variables
Rune Christiansen
J. Peters
CML
26
14
0
16 Aug 2018
Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders
Patrick Forré
Joris M. Mooij
CML
92
56
0
09 Jul 2018
Learning Bayesian Networks from Big Data with Greedy Search: Computational Complexity and Efficient Implementation
M. Scutari
C. Vitolo
A. Tucker
78
99
0
22 Apr 2018
Comparative Benchmarking of Causal Discovery Techniques
Karamjit Singh
Garima Gupta
Vartika Tewari
Gautam M. Shroff
CML
115
13
0
18 Aug 2017
Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs
Emilija Perković
J. Textor
M. Kalisch
Marloes H. Maathuis
OffRL
95
149
0
22 Jun 2016
Structure Learning in Graphical Modeling
Mathias Drton
Marloes H. Maathuis
CML
112
253
0
07 Jun 2016
Identifiability Assumptions and Algorithm for Directed Graphical Models with Feedback
G. Park
Garvesh Raskutti
CML
29
6
0
14 Feb 2016
Distributional Equivalence and Structure Learning for Bow-free Acyclic Path Diagrams
Christopher Nowzohour
Marloes H. Maathuis
R. Evans
Peter Buhlmann
96
22
0
07 Aug 2015
A Complete Generalized Adjustment Criterion
Emilija Perković
J. Textor
M. Kalisch
Marloes H. Maathuis
OffRL
CML
85
73
0
06 Jul 2015
1
2
Next