ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1309.7598
  4. Cited By
On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori
  Perturbations

On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations

29 September 2013
Tamir Hazan
Subhransu Maji
Tommi Jaakkola
ArXiv (abs)PDFHTML

Papers citing "On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations"

16 / 16 papers shown
Title
Differentiable Clustering with Perturbed Spanning Forests
Differentiable Clustering with Perturbed Spanning Forests
Lawrence Stewart
Francis R. Bach
Felipe Llinares-López
Quentin Berthet
97
11
0
25 May 2023
On Quantum Circuits for Discrete Graphical Models
On Quantum Circuits for Discrete Graphical Models
Nico Piatkowski
Christa Zoufal
23
4
0
01 Jun 2022
A Review of the Gumbel-max Trick and its Extensions for Discrete
  Stochasticity in Machine Learning
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
113
98
0
04 Oct 2021
Inspect, Understand, Overcome: A Survey of Practical Methods for AI
  Safety
Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety
Sebastian Houben
Stephanie Abrecht
Maram Akila
Andreas Bär
Felix Brockherde
...
Serin Varghese
Michael Weber
Sebastian J. Wirkert
Tim Wirtz
Matthias Woehrle
AAML
121
58
0
29 Apr 2021
Gradient Estimation with Stochastic Softmax Tricks
Gradient Estimation with Stochastic Softmax Tricks
Max B. Paulus
Dami Choi
Daniel Tarlow
Andreas Krause
Chris J. Maddison
BDL
97
88
0
15 Jun 2020
Learning with Differentiable Perturbed Optimizers
Learning with Differentiable Perturbed Optimizers
Quentin Berthet
Mathieu Blondel
O. Teboul
Marco Cuturi
Jean-Philippe Vert
Francis R. Bach
94
109
0
20 Feb 2020
Approximate Inference via Weighted Rademacher Complexity
Approximate Inference via Weighted Rademacher Complexity
Jonathan Kuck
Ashish Sabharwal
Stefano Ermon
65
7
0
27 Jan 2018
Fast Amortized Inference and Learning in Log-linear Models with Randomly
  Perturbed Nearest Neighbor Search
Fast Amortized Inference and Learning in Log-linear Models with Randomly Perturbed Nearest Neighbor Search
Stephen Mussmann
Daniel Levy
Stefano Ermon
FedML
59
22
0
11 Jul 2017
Lost Relatives of the Gumbel Trick
Lost Relatives of the Gumbel Trick
Matej Balog
Nilesh Tripuraneni
Zoubin Ghahramani
Adrian Weller
85
27
0
13 Jun 2017
Perturb-and-MPM: Quantifying Segmentation Uncertainty in Dense
  Multi-Label CRFs
Perturb-and-MPM: Quantifying Segmentation Uncertainty in Dense Multi-Label CRFs
Raphael Meier
Urspeter Knecht
Alain Jungo
Roland Wiest
M. Reyes
42
6
0
01 Mar 2017
A Poisson process model for Monte Carlo
A Poisson process model for Monte Carlo
Chris J. Maddison
95
22
0
18 Feb 2016
High Dimensional Inference with Random Maximum A-Posteriori
  Perturbations
High Dimensional Inference with Random Maximum A-Posteriori Perturbations
Tamir Hazan
Francesco Orabona
Anand D. Sarwate
Subhransu Maji
Tommi Jaakkola
78
7
0
10 Feb 2016
Multicuts and Perturb & MAP for Probabilistic Graph Clustering
Multicuts and Perturb & MAP for Probabilistic Graph Clustering
Jörg H. Kappes
Paul Swoboda
Bogdan Savchynskyy
Tamir Hazan
Christoph Schnörr
30
7
0
09 Jan 2016
A* Sampling
A* Sampling
Chris J. Maddison
Daniel Tarlow
T. Minka
123
393
0
31 Oct 2014
Training Restricted Boltzmann Machine by Perturbation
Training Restricted Boltzmann Machine by Perturbation
Siamak Ravanbakhsh
Russell Greiner
B. Frey
61
3
0
06 May 2014
On Measure Concentration of Random Maximum A-Posteriori Perturbations
On Measure Concentration of Random Maximum A-Posteriori Perturbations
Francesco Orabona
Tamir Hazan
Anand D. Sarwate
Tommi Jaakkola
76
14
0
15 Oct 2013
1