ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1310.0740
  4. Cited By
Pseudo-Marginal Bayesian Inference for Gaussian Processes
v1v2v3v4 (latest)

Pseudo-Marginal Bayesian Inference for Gaussian Processes

2 October 2013
Maurizio Filippone
Mark Girolami
ArXiv (abs)PDFHTML

Papers citing "Pseudo-Marginal Bayesian Inference for Gaussian Processes"

29 / 29 papers shown
Title
Sparse Gaussian Process Hyperparameters: Optimize or Integrate?
Sparse Gaussian Process Hyperparameters: Optimize or Integrate?
V. Lalchand
W. Bruinsma
David R. Burt
C. Rasmussen
GP
23
6
0
04 Nov 2022
Validating Gaussian Process Models with Simulation-Based Calibration
Validating Gaussian Process Models with Simulation-Based Calibration
John Mcleod
F. Simpson
56
3
0
27 Oct 2021
Low-rank statistical finite elements for scalable model-data synthesis
Low-rank statistical finite elements for scalable model-data synthesis
Connor Duffin
E. Cripps
T. Stemler
Mark Girolami
64
11
0
10 Sep 2021
On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
  approach
On MCMC for variationally sparse Gaussian processes: A pseudo-marginal approach
Karla Monterrubio-Gómez
S. Wade
47
2
0
04 Mar 2021
Marginalised Gaussian Processes with Nested Sampling
Marginalised Gaussian Processes with Nested Sampling
F. Simpson
V. Lalchand
C. Rasmussen
GP
114
10
0
30 Oct 2020
Scalable Approximate Inference and Some Applications
Scalable Approximate Inference and Some Applications
Jun Han
BDL
52
1
0
07 Mar 2020
Sparse Gaussian Processes Revisited: Bayesian Approaches to
  Inducing-Variable Approximations
Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi
Markus Heinonen
Edwin V. Bonilla
Zheyan Shen
Maurizio Filippone
UQCVBDL
42
0
0
06 Mar 2020
Max-and-Smooth: a two-step approach for approximate Bayesian inference
  in latent Gaussian models
Max-and-Smooth: a two-step approach for approximate Bayesian inference in latent Gaussian models
B. Hrafnkelsson
S. Siegert
Raphael Huser
H. Bakka
Árni V. Jóhannesson
61
18
0
27 Jul 2019
Vecchia-Laplace approximations of generalized Gaussian processes for big
  non-Gaussian spatial data
Vecchia-Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data
Daniel Zilber
Matthias Katzfuss
84
34
0
18 Jun 2019
Stein Variational Gradient Descent Without Gradient
Stein Variational Gradient Descent Without Gradient
J. Han
Qiang Liu
92
45
0
07 Jun 2018
Pseudo-marginal Bayesian inference for supervised Gaussian process
  latent variable models
Pseudo-marginal Bayesian inference for supervised Gaussian process latent variable models
Charles W. L. Gadd
S. Wade
A. Shah
D. Grammatopoulos
BDLGP
20
3
0
28 Mar 2018
A determinant-free method to simulate the parameters of large Gaussian
  fields
A determinant-free method to simulate the parameters of large Gaussian fields
L. Ellam
Heiko Strathmann
Mark Girolami
Iain Murray
86
3
0
11 Sep 2017
Efficient and principled score estimation with Nyström kernel
  exponential families
Efficient and principled score estimation with Nyström kernel exponential families
Danica J. Sutherland
Heiko Strathmann
Michael Arbel
Arthur Gretton
81
24
0
23 May 2017
Hyperpriors for Matérn fields with applications in Bayesian inversion
Hyperpriors for Matérn fields with applications in Bayesian inversion
L. Roininen
Mark Girolami
Sari Lasanen
M. Markkanen
78
57
0
09 Dec 2016
Inference for log Gaussian Cox processes using an approximate marginal
  posterior
Inference for log Gaussian Cox processes using an approximate marginal posterior
Shinichiro Shirota
A. Gelfand
49
7
0
30 Nov 2016
Pseudo-marginal Metropolis--Hastings using averages of unbiased
  estimators
Pseudo-marginal Metropolis--Hastings using averages of unbiased estimators
Chris Sherlock
Alexandre Hoang Thiery
Anthony Lee
58
5
0
31 Oct 2016
Approximate Marginal Posterior for Log Gaussian Cox Processes
Shinichiro Shirota
A. Gelfand
22
2
0
26 Jun 2016
Pseudo-Marginal Slice Sampling
Pseudo-Marginal Slice Sampling
Iain Murray
Matthew M. Graham
101
37
0
10 Oct 2015
Unbiased Bayesian Inference for Population Markov Jump Processes via
  Random Truncations
Unbiased Bayesian Inference for Population Markov Jump Processes via Random Truncations
Anastasis Georgoulas
J. Hillston
G. Sanguinetti
75
39
0
28 Sep 2015
Adaptive Multiple Importance Sampling for Gaussian Processes
Adaptive Multiple Importance Sampling for Gaussian Processes
Xiaoyu Xiong
Václav Smídl
Maurizio Filippone
47
6
0
05 Aug 2015
Efficiency of delayed-acceptance random walk Metropolis algorithms
Efficiency of delayed-acceptance random walk Metropolis algorithms
Chris Sherlock
Alexandre Hoang Thiery
Andrew Golightly
75
16
0
26 Jun 2015
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential
  Families
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families
Heiko Strathmann
Dino Sejdinovic
Samuel Livingstone
Z. Szabó
Arthur Gretton
BDL
100
76
0
08 Jun 2015
Enabling scalable stochastic gradient-based inference for Gaussian
  processes by employing the Unbiased LInear System SolvEr (ULISSE)
Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE)
Maurizio Filippone
Raphael Engler
116
31
0
22 Jan 2015
Control Functionals for Quasi-Monte Carlo Integration
Control Functionals for Quasi-Monte Carlo Integration
Chris J. Oates
Mark Girolami
169
27
0
14 Jan 2015
Optimal scaling for the pseudo-marginal random walk Metropolis:
  insensitivity to the noise generating mechanism
Optimal scaling for the pseudo-marginal random walk Metropolis: insensitivity to the noise generating mechanism
Chris Sherlock
OT
79
9
0
19 Aug 2014
Fast matrix computations for functional additive models
Fast matrix computations for functional additive models
Simon Barthelmé
34
3
0
20 Feb 2014
Bayesian Inference for Gaussian Process Classifiers with Annealing and
  Pseudo-Marginal MCMC
Bayesian Inference for Gaussian Process Classifiers with Annealing and Pseudo-Marginal MCMC
Maurizio Filippone
44
6
0
28 Nov 2013
Analysis of the Gibbs sampler for hierarchical inverse problems
Analysis of the Gibbs sampler for hierarchical inverse problems
S. Agapiou
Johnathan M. Bardsley
O. Papaspiliopoulos
Andrew M. Stuart
99
60
0
05 Nov 2013
Kernel Adaptive Metropolis-Hastings
Kernel Adaptive Metropolis-Hastings
Dino Sejdinovic
Heiko Strathmann
M. Garcia
Christophe Andrieu
Arthur Gretton
81
46
0
19 Jul 2013
1