Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1310.6740
Cited By
Active Learning of Linear Embeddings for Gaussian Processes
24 October 2013
Roman Garnett
Michael A. Osborne
Philipp Hennig
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Active Learning of Linear Embeddings for Gaussian Processes"
44 / 44 papers shown
Title
Towards Universal Offline Black-Box Optimization via Learning Language Model Embeddings
Rong-Xi Tan
Ming Chen
Ke Xue
Yao Wang
Yaoyuan Wang
Sheng Fu
Chao Qian
OffRL
32
0
0
08 Jun 2025
Posterior Inference with Diffusion Models for High-dimensional Black-box Optimization
Taeyoung Yun
Kiyoung Om
Jaewoo Lee
Sujin Yun
Jinkyoo Park
119
2
0
24 Feb 2025
Amortized Active Learning for Nonparametric Functions
Cen-You Li
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
55
0
0
25 Jul 2024
Global Optimisation of Black-Box Functions with Generative Models in the Wasserstein Space
Tigran Ramazyan
M. Hushchyn
D. Derkach
69
0
0
16 Jul 2024
A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences
Miguel González Duque
Richard Michael
Simon Bartels
Yevgen Zainchkovskyy
Søren Hauberg
Wouter Boomsma
74
5
0
07 Jun 2024
Latent Energy-Based Odyssey: Black-Box Optimization via Expanded Exploration in the Energy-Based Latent Space
Peiyu Yu
Dinghuai Zhang
Hengzhi He
Xiaojian Ma
Ruiyao Miao
...
Deqian Kong
Ruiqi Gao
Jianwen Xie
Guang Cheng
Ying Nian Wu
103
6
0
27 May 2024
Combining additivity and active subspaces for high-dimensional Gaussian process modeling
M. Binois
Victor Picheny
92
0
0
06 Feb 2024
High-dimensional Bayesian Optimization via Covariance Matrix Adaptation Strategy
Lam Ngo
Huong Ha
Jeffrey Chan
Vu-Linh Nguyen
Hongyu Zhang
85
2
0
05 Feb 2024
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner
E. Hellsten
Luigi Nardi
99
28
0
03 Feb 2024
High-dimensional mixed-categorical Gaussian processes with application to multidisciplinary design optimization for a green aircraft
P. Saves
Y. Diouane
N. Bartoli
T. Lefebvre
J. Morlier
99
5
0
10 Nov 2023
SMT 2.0: A Surrogate Modeling Toolbox with a focus on Hierarchical and Mixed Variables Gaussian Processes
P. Saves
R. Lafage
N. Bartoli
Y. Diouane
J. Bussemaker
T. Lefebvre
John T. Hwang
J. Morlier
J. Martins
MoE
112
72
0
23 May 2023
Active Cost-aware Labeling of Streaming Data
Ti-jian Cai
Kirthevasan Kandasamy
51
3
0
13 Apr 2023
Hierarchical-Hyperplane Kernels for Actively Learning Gaussian Process Models of Nonstationary Systems
M. Bitzer
Mona Meister
Christoph Zimmer
77
6
0
17 Mar 2023
Bayesian Optimization over High-Dimensional Combinatorial Spaces via Dictionary-based Embeddings
Aryan Deshwal
Sebastian Ament
Maximilian Balandat
E. Bakshy
J. Doppa
David Eriksson
143
23
0
03 Mar 2023
Linear Embedding-based High-dimensional Batch Bayesian Optimization without Reconstruction Mappings
Shuhei A Horiguchi
Tomoharu Iwata
Taku Tsuzuki
Yosuke Ozawa
40
1
0
02 Nov 2022
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
77
3
0
04 Aug 2022
Safe Active Learning for Multi-Output Gaussian Processes
Cen-You Li
Barbara Rakitsch
Christoph Zimmer
UQCV
136
18
0
28 Mar 2022
Local Latent Space Bayesian Optimization over Structured Inputs
Natalie Maus
Haydn Thomas Jones
Juston Moore
Matt J. Kusner
John Bradshaw
Jacob R. Gardner
BDL
120
72
0
28 Jan 2022
LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark Suite for Lasso
Kenan Sehic
Alexandre Gramfort
Joseph Salmon
Luigi Nardi
116
39
0
04 Nov 2021
Global optimization using random embeddings
C. Cartis
E. Massart
Adilet Otemissov
66
9
0
26 Jul 2021
High-Dimensional Bayesian Optimisation with Variational Autoencoders and Deep Metric Learning
Antoine Grosnit
Rasul Tutunov
A. Maraval
Ryan-Rhys Griffiths
Alexander I. Cowen-Rivers
...
Wenlong Lyu
Zhitang Chen
Jun Wang
Jan Peters
Haitham Bou-Ammar
BDL
DRL
101
61
0
07 Jun 2021
High-Dimensional Bayesian Optimization with Sparse Axis-Aligned Subspaces
David Eriksson
M. Jankowiak
113
148
0
27 Feb 2021
Sensitivity Prewarping for Local Surrogate Modeling
Nathan Wycoff
M. Binois
R. Gramacy
75
10
0
15 Jan 2021
Good practices for Bayesian Optimization of high dimensional structured spaces
E. Siivola
Javier I. González
Andrei Paleyes
Aki Vehtari
95
38
0
31 Dec 2020
High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds
Noémie Jaquier
Leonel Rozo
103
24
0
21 Oct 2020
Parameter Optimization using high-dimensional Bayesian Optimization
David Yenicelik
72
2
0
05 Oct 2020
Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search Spaces
Hung The Tran
Sunil R. Gupta
Santu Rana
Huong Ha
Svetha Venkatesh
78
7
0
05 Sep 2020
Bayesian learning of orthogonal embeddings for multi-fidelity Gaussian Processes
Panagiotis Tsilifis
Piyush Pandita
Sayan Ghosh
Valeria Andreoli
T. Vandeputte
Liping Wang
42
19
0
05 Aug 2020
Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining
Austin Tripp
Erik A. Daxberger
José Miguel Hernández-Lobato
MedIm
110
143
0
16 Jun 2020
Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?
Shen Yan
Yu Zheng
Wei Ao
Xiao Zeng
Mi Zhang
SSL
AI4CE
112
104
0
12 Jun 2020
ENTMOOT: A Framework for Optimization over Ensemble Tree Models
Alexander Thebelt
Jan Kronqvist
Miten Mistry
Robert M. Lee
Nathan Sudermann-Merx
Ruth Misener
89
57
0
10 Mar 2020
Black-Box Optimization with Local Generative Surrogates
S. Shirobokov
V. Belavin
Michael Kagan
Andrey Ustyuzhanin
A. G. Baydin
51
3
0
11 Feb 2020
Accelerating Psychometric Screening Tests With Bayesian Active Differential Selection
Trevor J. Larsen
Gustavo Malkomes
D. Barbour
16
4
0
04 Feb 2020
Re-Examining Linear Embeddings for High-Dimensional Bayesian Optimization
Benjamin Letham
Roberto Calandra
Akshara Rai
E. Bakshy
122
116
0
31 Jan 2020
Bayesian Optimization for Policy Search in High-Dimensional Systems via Automatic Domain Selection
Lukas P. Frohlich
Edgar D. Klenske
Christian Daniel
Melanie Zeilinger
99
12
0
21 Jan 2020
Trading Convergence Rate with Computational Budget in High Dimensional Bayesian Optimization
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
65
14
0
27 Nov 2019
Deep Kernels with Probabilistic Embeddings for Small-Data Learning
Ankur Mallick
Chaitanya Dwivedi
B. Kailkhura
Gauri Joshi
T. Y. Han
BDL
UQCV
53
8
0
13 Oct 2019
Evolving Gaussian Process kernels from elementary mathematical expressions
Ibai Roman
Roberto Santana
A. Mendiburu
Jose A. Lozano
44
3
0
11 Oct 2019
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
106
474
0
03 Oct 2019
The Differentiable Cross-Entropy Method
Brandon Amos
Denis Yarats
131
54
0
27 Sep 2019
Sequential Learning of Active Subspaces
Nathan Wycoff
M. Binois
Stefan M. Wild
44
29
0
26 Jul 2019
High-dimensional Bayesian optimization using low-dimensional feature spaces
Riccardo Moriconi
M. Deisenroth
K. S. S. Kumar
212
11
0
27 Feb 2019
On the choice of the low-dimensional domain for global optimization via random embeddings
M. Binois
D. Ginsbourger
O. Roustant
100
62
0
18 Apr 2017
Bayesian Optimization for Synthetic Gene Design
Javier I. González
Joseph Longworth
D. James
Neil D. Lawrence
95
80
0
07 May 2015
1