ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1312.1666
  4. Cited By
Semi-Stochastic Gradient Descent Methods

Semi-Stochastic Gradient Descent Methods

5 December 2013
Jakub Konecný
Peter Richtárik
    ODL
ArXivPDFHTML

Papers citing "Semi-Stochastic Gradient Descent Methods"

50 / 50 papers shown
Title
Second-order Information Promotes Mini-Batch Robustness in
  Variance-Reduced Gradients
Second-order Information Promotes Mini-Batch Robustness in Variance-Reduced Gradients
Sachin Garg
A. Berahas
Michal Dereziñski
46
1
0
23 Apr 2024
Stochastic Gradient Methods with Preconditioned Updates
Stochastic Gradient Methods with Preconditioned Updates
Abdurakhmon Sadiev
Aleksandr Beznosikov
Abdulla Jasem Almansoori
Dmitry Kamzolov
R. Tappenden
Martin Takáč
ODL
39
9
0
01 Jun 2022
Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free
  Optimization
Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization
Kaiwen Zhou
Anthony Man-Cho So
James Cheng
27
1
0
30 Sep 2021
Physics-informed Dyna-Style Model-Based Deep Reinforcement Learning for
  Dynamic Control
Physics-informed Dyna-Style Model-Based Deep Reinforcement Learning for Dynamic Control
Xin-Yang Liu
Jian-Xun Wang
AI4CE
31
38
0
31 Jul 2021
Stochastic Polyak Stepsize with a Moving Target
Stochastic Polyak Stepsize with a Moving Target
Robert Mansel Gower
Aaron Defazio
Michael G. Rabbat
32
17
0
22 Jun 2021
SVRG Meets AdaGrad: Painless Variance Reduction
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Simon Lacoste-Julien
23
18
0
18 Feb 2021
Variance-Reduced Methods for Machine Learning
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark Schmidt
Francis R. Bach
Peter Richtárik
24
112
0
02 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
42
0
0
26 Aug 2020
Sampling and Update Frequencies in Proximal Variance-Reduced Stochastic
  Gradient Methods
Sampling and Update Frequencies in Proximal Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
27
4
0
13 Feb 2020
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
57
30
0
13 Feb 2020
Variance Reduced Coordinate Descent with Acceleration: New Method With a
  Surprising Application to Finite-Sum Problems
Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems
Filip Hanzely
D. Kovalev
Peter Richtárik
40
17
0
11 Feb 2020
A Unifying Framework for Variance Reduction Algorithms for Finding
  Zeroes of Monotone Operators
A Unifying Framework for Variance Reduction Algorithms for Finding Zeroes of Monotone Operators
Xun Zhang
W. Haskell
Z. Ye
25
3
0
22 Jun 2019
Why gradient clipping accelerates training: A theoretical justification
  for adaptivity
Why gradient clipping accelerates training: A theoretical justification for adaptivity
Jiaming Zhang
Tianxing He
S. Sra
Ali Jadbabaie
30
446
0
28 May 2019
Cocoercivity, Smoothness and Bias in Variance-Reduced Stochastic
  Gradient Methods
Cocoercivity, Smoothness and Bias in Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
20
2
0
21 Mar 2019
Sparse Regression and Adaptive Feature Generation for the Discovery of
  Dynamical Systems
Sparse Regression and Adaptive Feature Generation for the Discovery of Dynamical Systems
C. S. Kulkarni
23
10
0
07 Feb 2019
SAGA with Arbitrary Sampling
SAGA with Arbitrary Sampling
Xun Qian
Zheng Qu
Peter Richtárik
37
25
0
24 Jan 2019
R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with
  Curvature Independent Rate
R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with Curvature Independent Rate
Jiaming Zhang
Hongyi Zhang
S. Sra
26
39
0
10 Nov 2018
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical
  Risk Minimization via Accumulating Sample Strategy
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical Risk Minimization via Accumulating Sample Strategy
Majid Jahani
Xi He
Chenxin Ma
Aryan Mokhtari
Dheevatsa Mudigere
Alejandro Ribeiro
Martin Takáč
24
18
0
26 Oct 2018
A fast quasi-Newton-type method for large-scale stochastic optimisation
A fast quasi-Newton-type method for large-scale stochastic optimisation
A. Wills
Carl Jidling
Thomas B. Schon
ODL
36
7
0
29 Sep 2018
An Improvement of Data Classification Using Random Multimodel Deep
  Learning (RMDL)
An Improvement of Data Classification Using Random Multimodel Deep Learning (RMDL)
Mojtaba Heidarysafa
Kamran Kowsari
Donald E. Brown
K. Meimandi
Laura E. Barnes
27
36
0
23 Aug 2018
Improved asynchronous parallel optimization analysis for stochastic
  incremental methods
Improved asynchronous parallel optimization analysis for stochastic incremental methods
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
16
70
0
11 Jan 2018
Momentum and Stochastic Momentum for Stochastic Gradient, Newton,
  Proximal Point and Subspace Descent Methods
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
Nicolas Loizou
Peter Richtárik
24
200
0
27 Dec 2017
Large Scale Empirical Risk Minimization via Truncated Adaptive Newton
  Method
Large Scale Empirical Risk Minimization via Truncated Adaptive Newton Method
Mark Eisen
Aryan Mokhtari
Alejandro Ribeiro
35
16
0
22 May 2017
SARAH: A Novel Method for Machine Learning Problems Using Stochastic
  Recursive Gradient
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient
Lam M. Nguyen
Jie Liu
K. Scheinberg
Martin Takáč
ODL
42
598
0
01 Mar 2017
Surpassing Gradient Descent Provably: A Cyclic Incremental Method with
  Linear Convergence Rate
Surpassing Gradient Descent Provably: A Cyclic Incremental Method with Linear Convergence Rate
Aryan Mokhtari
Mert Gurbuzbalaban
Alejandro Ribeiro
37
36
0
01 Nov 2016
Federated Optimization: Distributed Machine Learning for On-Device
  Intelligence
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
71
1,877
0
08 Oct 2016
AIDE: Fast and Communication Efficient Distributed Optimization
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
19
150
0
24 Aug 2016
ASAGA: Asynchronous Parallel SAGA
ASAGA: Asynchronous Parallel SAGA
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
AI4TS
31
101
0
15 Jun 2016
Adaptive Newton Method for Empirical Risk Minimization to Statistical
  Accuracy
Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy
Aryan Mokhtari
Alejandro Ribeiro
ODL
25
32
0
24 May 2016
Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
Hongyi Zhang
Sashank J. Reddi
S. Sra
38
240
0
23 May 2016
Barzilai-Borwein Step Size for Stochastic Gradient Descent
Barzilai-Borwein Step Size for Stochastic Gradient Descent
Conghui Tan
Shiqian Ma
Yuhong Dai
Yuqiu Qian
40
182
0
13 May 2016
Trading-off variance and complexity in stochastic gradient descent
Trading-off variance and complexity in stochastic gradient descent
Vatsal Shah
Megasthenis Asteris
Anastasios Kyrillidis
Sujay Sanghavi
25
13
0
22 Mar 2016
A Simple Practical Accelerated Method for Finite Sums
A Simple Practical Accelerated Method for Finite Sums
Aaron Defazio
30
121
0
08 Feb 2016
Importance Sampling for Minibatches
Importance Sampling for Minibatches
Dominik Csiba
Peter Richtárik
32
113
0
06 Feb 2016
Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters
Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters
Zeyuan Allen-Zhu
Yang Yuan
Karthik Sridharan
20
27
0
05 Feb 2016
Kalman-based Stochastic Gradient Method with Stop Condition and
  Insensitivity to Conditioning
Kalman-based Stochastic Gradient Method with Stop Condition and Insensitivity to Conditioning
V. Patel
31
35
0
03 Dec 2015
Federated Optimization:Distributed Optimization Beyond the Datacenter
Federated Optimization:Distributed Optimization Beyond the Datacenter
Jakub Konecný
H. B. McMahan
Daniel Ramage
FedML
28
728
0
11 Nov 2015
Stop Wasting My Gradients: Practical SVRG
Stop Wasting My Gradients: Practical SVRG
Reza Babanezhad
Mohamed Osama Ahmed
Alim Virani
Mark Schmidt
Jakub Konecný
Scott Sallinen
15
134
0
05 Nov 2015
New Optimisation Methods for Machine Learning
New Optimisation Methods for Machine Learning
Aaron Defazio
46
6
0
09 Oct 2015
Scalable Computation of Regularized Precision Matrices via Stochastic
  Optimization
Scalable Computation of Regularized Precision Matrices via Stochastic Optimization
Yves F. Atchadé
Rahul Mazumder
Jie-bin Chen
7
8
0
01 Sep 2015
Distributed Stochastic Variance Reduced Gradient Methods and A Lower
  Bound for Communication Complexity
Distributed Stochastic Variance Reduced Gradient Methods and A Lower Bound for Communication Complexity
Jason D. Lee
Qihang Lin
Tengyu Ma
Tianbao Yang
FedML
29
16
0
27 Jul 2015
On Variance Reduction in Stochastic Gradient Descent and its
  Asynchronous Variants
On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
40
194
0
23 Jun 2015
Variance Reduced Stochastic Gradient Descent with Neighbors
Variance Reduced Stochastic Gradient Descent with Neighbors
Thomas Hofmann
Aurelien Lucchi
Simon Lacoste-Julien
Brian McWilliams
ODL
33
153
0
11 Jun 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
36
273
0
16 Apr 2015
A Variance Reduced Stochastic Newton Method
A Variance Reduced Stochastic Newton Method
Aurelien Lucchi
Brian McWilliams
Thomas Hofmann
ODL
33
50
0
28 Mar 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
61
97
0
27 Feb 2015
SDCA without Duality
SDCA without Duality
Shai Shalev-Shwartz
27
47
0
22 Feb 2015
Global Convergence of Online Limited Memory BFGS
Global Convergence of Online Limited Memory BFGS
Aryan Mokhtari
Alejandro Ribeiro
32
164
0
06 Sep 2014
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
93
737
0
19 Mar 2014
Minimizing Finite Sums with the Stochastic Average Gradient
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
114
1,244
0
10 Sep 2013
1