Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1312.6184
Cited By
Do Deep Nets Really Need to be Deep?
21 December 2013
Lei Jimmy Ba
R. Caruana
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Do Deep Nets Really Need to be Deep?"
37 / 337 papers shown
Title
Patient-Driven Privacy Control through Generalized Distillation
Z. Berkay Celik
David Lopez-Paz
Patrick McDaniel
14
18
0
26 Nov 2016
Training Sparse Neural Networks
Suraj Srinivas
Akshayvarun Subramanya
R. Venkatesh Babu
11
204
0
21 Nov 2016
Fast Video Classification via Adaptive Cascading of Deep Models
Haichen Shen
Seungyeop Han
Matthai Philipose
Arvind Krishnamurthy
34
78
0
20 Nov 2016
Deep Model Compression: Distilling Knowledge from Noisy Teachers
Bharat Bhusan Sau
V. Balasubramanian
18
181
0
30 Oct 2016
Small-footprint Highway Deep Neural Networks for Speech Recognition
Liang Lu
Steve Renals
30
15
0
18 Oct 2016
Distilling an Ensemble of Greedy Dependency Parsers into One MST Parser
A. Kuncoro
Miguel Ballesteros
Lingpeng Kong
Chris Dyer
Noah A. Smith
MoE
23
77
0
24 Sep 2016
Why does deep and cheap learning work so well?
Henry W. Lin
Max Tegmark
David Rolnick
19
602
0
29 Aug 2016
Lets keep it simple, Using simple architectures to outperform deeper and more complex architectures
S. H. HasanPour
Mohammad Rouhani
Mohsen Fayyaz
Mohammad Sabokrou
18
118
0
22 Aug 2016
Knowledge Distillation for Small-footprint Highway Networks
Liang Lu
Michelle Guo
Steve Renals
16
73
0
02 Aug 2016
Supervised learning based on temporal coding in spiking neural networks
Hesham Mostafa
29
350
0
27 Jun 2016
Sequence-Level Knowledge Distillation
Yoon Kim
Alexander M. Rush
27
1,098
0
25 Jun 2016
Active Long Term Memory Networks
Tommaso Furlanello
Jiaping Zhao
Andrew M. Saxe
Laurent Itti
B. Tjan
KELM
CLL
32
41
0
07 Jun 2016
The Implementation of Low-cost Urban Acoustic Monitoring Devices
C. Mydlarz
Justin Salamon
J. P. Bello
14
140
0
26 May 2016
FractalNet: Ultra-Deep Neural Networks without Residuals
Gustav Larsson
Michael Maire
Gregory Shakhnarovich
45
933
0
24 May 2016
A topological insight into restricted Boltzmann machines
Decebal Constantin Mocanu
Elena Mocanu
Phuong H. Nguyen
M. Gibescu
A. Liotta
BDL
6
97
0
20 Apr 2016
Training Constrained Deconvolutional Networks for Road Scene Semantic Segmentation
G. Ros
Simon Stent
P. Alcantarilla
Tomoki Watanabe
13
55
0
06 Apr 2016
Do Deep Convolutional Nets Really Need to be Deep and Convolutional?
G. Urban
Krzysztof J. Geras
Samira Ebrahimi Kahou
Ozlem Aslan
Shengjie Wang
R. Caruana
Abdel-rahman Mohamed
Matthai Philipose
Matthew Richardson
20
47
0
17 Mar 2016
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
Mohammad Rastegari
Vicente Ordonez
Joseph Redmon
Ali Farhadi
MQ
54
4,331
0
16 Mar 2016
Network Morphism
Tao Wei
Changhu Wang
Y. Rui
Chia-Ju Chen
21
176
0
05 Mar 2016
Decision Forests, Convolutional Networks and the Models in-Between
Yani Andrew Ioannou
D. Robertson
Darko Zikic
Peter Kontschieder
Jamie Shotton
Matthew Brown
A. Criminisi
18
88
0
03 Mar 2016
A Taxonomy of Deep Convolutional Neural Nets for Computer Vision
Suraj Srinivas
Ravi Kiran Sarvadevabhatla
Konda Reddy Mopuri
N. Prabhu
S. Kruthiventi
R. Venkatesh Babu
OOD
35
215
0
25 Jan 2016
Distilling Knowledge from Deep Networks with Applications to Healthcare Domain
Zhengping Che
S. Purushotham
R. Khemani
Yan Liu
17
139
0
11 Dec 2015
Sparsifying Neural Network Connections for Face Recognition
Yi Sun
Xiaogang Wang
Xiaoou Tang
3DH
CVBM
24
141
0
07 Dec 2015
Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning
Emilio Parisotto
Jimmy Lei Ba
Ruslan Salakhutdinov
OffRL
14
590
0
19 Nov 2015
Policy Distillation
Andrei A. Rusu
Sergio Gomez Colmenarejo
Çağlar Gülçehre
Guillaume Desjardins
J. Kirkpatrick
Razvan Pascanu
Volodymyr Mnih
Koray Kavukcuoglu
R. Hadsell
22
680
0
19 Nov 2015
Representational Distance Learning for Deep Neural Networks
Patrick McClure
N. Kriegeskorte
22
48
0
12 Nov 2015
Distilling Model Knowledge
George Papamakarios
BDL
24
17
0
08 Oct 2015
Simultaneous Deep Transfer Across Domains and Tasks
Eric Tzeng
Judy Hoffman
Trevor Darrell
Kate Saenko
OOD
24
1,363
0
08 Oct 2015
Compressing Convolutional Neural Networks
Wenlin Chen
James T. Wilson
Stephen Tyree
Kilian Q. Weinberger
Yixin Chen
24
139
0
14 Jun 2015
A Scale Mixture Perspective of Multiplicative Noise in Neural Networks
Eric T. Nalisnick
Anima Anandkumar
Padhraic Smyth
27
19
0
10 Jun 2015
Fast ConvNets Using Group-wise Brain Damage
V. Lebedev
Victor Lempitsky
AAML
44
447
0
08 Jun 2015
Recurrent Neural Network Training with Dark Knowledge Transfer
Zhiyuan Tang
Dong Wang
Zhiyong Zhang
19
109
0
18 May 2015
In Defense of the Direct Perception of Affordances
David Fouhey
Xinyu Wang
Abhinav Gupta
21
21
0
05 May 2015
Compressing Neural Networks with the Hashing Trick
Wenlin Chen
James T. Wilson
Stephen Tyree
Kilian Q. Weinberger
Yixin Chen
18
1,190
0
19 Apr 2015
Hybrid Orthogonal Projection and Estimation (HOPE): A New Framework to Probe and Learn Neural Networks
Shiliang Zhang
Hui Jiang
3DV
26
9
0
03 Feb 2015
Crypto-Nets: Neural Networks over Encrypted Data
P. Xie
Mikhail Bilenko
Tom Finley
Ran Gilad-Bachrach
Kristin E. Lauter
M. Naehrig
FedML
31
150
0
18 Dec 2014
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,638
0
03 Jul 2012
Previous
1
2
3
4
5
6
7