ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1401.3492
  4. Cited By
ParamILS: An Automatic Algorithm Configuration Framework

ParamILS: An Automatic Algorithm Configuration Framework

15 January 2014
Frank Hutter
Thomas Stuetzle
Kevin Leyton-Brown
T. Stützle
ArXiv (abs)PDFHTML

Papers citing "ParamILS: An Automatic Algorithm Configuration Framework"

50 / 156 papers shown
Title
A meta-learning recommender system for hyperparameter tuning: predicting
  when tuning improves SVM classifiers
A meta-learning recommender system for hyperparameter tuning: predicting when tuning improves SVM classifiers
R. G. Mantovani
André Luis Debiaso Rossi
Edesio Alcobaça
Joaquin Vanschoren
A. Carvalho
74
69
0
04 Jun 2019
Learning to Optimize Computational Resources: Frugal Training with
  Generalization Guarantees
Learning to Optimize Computational Resources: Frugal Training with Generalization Guarantees
Maria-Florina Balcan
Tuomas Sandholm
Ellen Vitercik
70
16
0
26 May 2019
Benchmark and Survey of Automated Machine Learning Frameworks
Benchmark and Survey of Automated Machine Learning Frameworks
Marc-André Zöller
Marco F. Huber
75
86
0
26 Apr 2019
On the Impact of the Cutoff Time on the Performance of Algorithm
  Configurators
On the Impact of the Cutoff Time on the Performance of Algorithm Configurators
George T. Hall
P. S. Oliveto
Dirk Sudholt
70
12
0
12 Apr 2019
Hyper-Parameter Tuning for the (1+(λ,λ)) GA
Hyper-Parameter Tuning for the (1+(λ,λ)) GA
Nguyen Dang
Carola Doerr
61
21
0
09 Apr 2019
Fine-grained Search Space Classification for Hard Enumeration Variants
  of Subset Problems
Fine-grained Search Space Classification for Hard Enumeration Variants of Subset Problems
Juho Lauri
Sourav Dutta
43
22
0
22 Feb 2019
Procrastinating with Confidence: Near-Optimal, Anytime, Adaptive
  Algorithm Configuration
Procrastinating with Confidence: Near-Optimal, Anytime, Adaptive Algorithm Configuration
Robert D. Kleinberg
Kevin Leyton-Brown
Brendan Lucier
Devon R. Graham
65
20
0
14 Feb 2019
Automated Algorithm Selection: Survey and Perspectives
Automated Algorithm Selection: Survey and Perspectives
P. Kerschke
Holger H. Hoos
Frank Neumann
Heike Trautmann
77
384
0
28 Nov 2018
Tuning metaheuristics by sequential optimization of regression models
Tuning metaheuristics by sequential optimization of regression models
Athila R. Trindade
F. Campelo
36
15
0
11 Sep 2018
Boosting Binary Optimization via Binary Classification: A Case Study of
  Job Shop Scheduling
Boosting Binary Optimization via Binary Classification: A Case Study of Job Shop Scheduling
O. Shylo
Hesam Shams
25
9
0
31 Aug 2018
Faster Support Vector Machines
Faster Support Vector Machines
Sebastian Schlag
Matthias Schmitt
Christian Schulz
84
27
0
20 Aug 2018
Speeding up the Hyperparameter Optimization of Deep Convolutional Neural
  Networks
Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks
Tobias Hinz
Nicolás Navarro-Guerrero
S. Magg
S. Wermter
76
105
0
19 Jul 2018
LeapsAndBounds: A Method for Approximately Optimal Algorithm
  Configuration
LeapsAndBounds: A Method for Approximately Optimal Algorithm Configuration
Gellert Weisz
András Gyorgy
Csaba Szepesvári
48
35
0
02 Jul 2018
Towards Autonomous Reinforcement Learning: Automatic Setting of
  Hyper-parameters using Bayesian Optimization
Towards Autonomous Reinforcement Learning: Automatic Setting of Hyper-parameters using Bayesian Optimization
Juan Cruz Barsce
J. Palombarini
E. Martínez
GP
62
33
0
12 May 2018
Automatic Construction of Parallel Portfolios via Explicit Instance
  Grouping
Automatic Construction of Parallel Portfolios via Explicit Instance Grouping
Shengcai Liu
K. Tang
Xin Yao
79
29
0
17 Apr 2018
Theory of Parameter Control for Discrete Black-Box Optimization:
  Provable Performance Gains Through Dynamic Parameter Choices
Theory of Parameter Control for Discrete Black-Box Optimization: Provable Performance Gains Through Dynamic Parameter Choices
Benjamin Doerr
Carola Doerr
59
75
0
16 Apr 2018
Learning to Branch
Learning to Branch
Maria-Florina Balcan
Travis Dick
Tuomas Sandholm
Ellen Vitercik
90
173
0
27 Mar 2018
Algorithm Configuration: Learning policies for the quick termination of
  poor performers
Algorithm Configuration: Learning policies for the quick termination of poor performers
Daniel Karapetyan
Andrew J. Parkes
T. Stützle
BDL
16
5
0
26 Mar 2018
AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian
  Optimization with Structured Kernel Learning
AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning
Ahmed Alaa
M. Schaar
72
89
0
20 Feb 2018
Practical Transfer Learning for Bayesian Optimization
Practical Transfer Learning for Bayesian Optimization
Matthias Feurer
Benjamin Letham
Frank Hutter
E. Bakshy
142
35
0
06 Feb 2018
Warmstarting of Model-based Algorithm Configuration
Warmstarting of Model-based Algorithm Configuration
Marius Lindauer
Frank Hutter
91
62
0
14 Sep 2017
Dependency Injection for Programming by Optimization
Dependency Injection for Programming by Optimization
Zoltan A. Kocsis
J. Swan
53
8
0
13 Jul 2017
Hot-Rodding the Browser Engine: Automatic Configuration of JavaScript
  Compilers
Hot-Rodding the Browser Engine: Automatic Configuration of JavaScript Compilers
Chris Fawcett
Lars Kotthoff
Holger H. Hoos
50
1
0
11 Jul 2017
Deep Optimization for Spectrum Repacking
Deep Optimization for Spectrum Repacking
N. Newman
A. Fréchette
Kevin Leyton-Brown
36
34
0
11 Jun 2017
Pitfalls and Best Practices in Algorithm Configuration
Pitfalls and Best Practices in Algorithm Configuration
Katharina Eggensperger
Marius Lindauer
Frank Hutter
94
63
0
17 May 2017
Efficient Benchmarking of Algorithm Configuration Procedures via
  Model-Based Surrogates
Efficient Benchmarking of Algorithm Configuration Procedures via Model-Based Surrogates
Katharina Eggensperger
Marius Lindauer
Holger H. Hoos
Frank Hutter
Kevin Leyton-Brown
56
7
0
30 Mar 2017
Truth and Regret in Online Scheduling
Truth and Regret in Online Scheduling
Shuchi Chawla
Nikhil R. Devanur
Janardhan Kulkarni
Rad Niazadeh
48
13
0
01 Mar 2017
BliStrTune: Hierarchical Invention of Theorem Proving Strategies
BliStrTune: Hierarchical Invention of Theorem Proving Strategies
Jan Jakubuv
Josef Urban
83
25
0
26 Nov 2016
Monte Carlo Tableau Proof Search
Monte Carlo Tableau Proof Search
Michael Färber
C. Kaliszyk
Josef Urban
71
14
0
18 Nov 2016
A case study of algorithm selection for the traveling thief problem
A case study of algorithm selection for the traveling thief problem
Markus Wagner
Marius Lindauer
Mustafa Misir
Samadhi Nallaperuma
Frank Hutter
71
66
0
02 Sep 2016
Automatically Reinforcing a Game AI
Automatically Reinforcing a Game AI
D. St-Pierre
Jean-Baptiste Hoock
Jialin Liu
F. Teytaud
O. Teytaud
44
2
0
27 Jul 2016
Global Continuous Optimization with Error Bound and Fast Convergence
Global Continuous Optimization with Error Bound and Fast Convergence
Kenji Kawaguchi
Y. Maruyama
Xiaoyu Zheng
59
24
0
17 Jul 2016
Markov Chain methods for the bipartite Boolean quadratic programming
  problem
Markov Chain methods for the bipartite Boolean quadratic programming problem
Daniel Karapetyan
Abraham P. Punnen
Andrew J. Parkes
13
1
0
06 May 2016
ASlib: A Benchmark Library for Algorithm Selection
ASlib: A Benchmark Library for Algorithm Selection
B. Bischl
P. Kerschke
Lars Kotthoff
Marius Lindauer
Y. Malitsky
...
Holger Hoos
Frank Hutter
Kevin Leyton-Brown
Kevin Tierney
Joaquin Vanschoren
100
221
0
08 Jun 2015
Grid-based angle-constrained path planning
Grid-based angle-constrained path planning
Konstantin Yakovlev
E. Baskin
Ivan Hramoin
30
23
0
05 Jun 2015
Short Portfolio Training for CSP Solving
Short Portfolio Training for CSP Solving
Mirko Stojadinovic
Mladen Nikolic
Filip Marić
41
4
0
08 May 2015
The Configurable SAT Solver Challenge (CSSC)
The Configurable SAT Solver Challenge (CSSC)
Frank Hutter
Marius Lindauer
A. Balint
Sam Bayless
Holger Hoos
Kevin Leyton-Brown
LRM
96
80
0
05 May 2015
Hyperparameter Search in Machine Learning
Hyperparameter Search in Machine Learning
Marc Claesen
B. De Moor
102
443
0
07 Feb 2015
Easy Hyperparameter Search Using Optunity
Easy Hyperparameter Search Using Optunity
Marc Claesen
Jaak Simm
D. Popovic
Yves Moreau
B. De Moor
75
78
0
02 Dec 2014
Simulating Non Stationary Operators in Search Algorithms
Simulating Non Stationary Operators in Search Algorithms
Adrien Goëffon
F. Lardeux
F. Saubion
22
12
0
05 Sep 2014
Online Speedup Learning for Optimal Planning
Online Speedup Learning for Optimal Planning
Carmel Domshlak
E. Karpas
Shaul Markovitch
68
21
0
23 Jan 2014
Efficient Multi-Start Strategies for Local Search Algorithms
Efficient Multi-Start Strategies for Local Search Algorithms
András Gyorgy
Levente Kocsis
107
89
0
16 Jan 2014
Solver Scheduling via Answer Set Programming
Solver Scheduling via Answer Set Programming
Holger Hoos
Roland Kaminski
Marius Lindauer
Torsten Schaub
130
43
0
06 Jan 2014
Bayesian Optimization With Censored Response Data
Bayesian Optimization With Censored Response Data
Frank Hutter
Holger Hoos
Kevin Leyton-Brown
102
36
0
07 Oct 2013
Efficient Continuous-Time Markov Chain Estimation
Efficient Continuous-Time Markov Chain Estimation
Monir Hajiaghayi
Bonnie Kirkpatrick
Liangliang Wang
Alexandre Bouchard-Côté
64
31
0
12 Sep 2013
MaLeS: A Framework for Automatic Tuning of Automated Theorem Provers
MaLeS: A Framework for Automatic Tuning of Automated Theorem Provers
D. Kühlwein
Josef Urban
145
22
0
09 Aug 2013
A Multi-Engine Approach to Answer Set Programming
A Multi-Engine Approach to Answer Set Programming
Marco Maratea
Luca Pulina
Francesco Ricca
98
77
0
20 Jun 2013
Quality Measures of Parameter Tuning for Aggregated Multi-Objective
  Temporal Planning
Quality Measures of Parameter Tuning for Aggregated Multi-Objective Temporal Planning
M. Khouadjia
Marc Schoenauer
V. Vidal
Johann Dréo
P. Savéant
37
0
0
10 May 2013
Multi-Objective AI Planning: Comparing Aggregation and Pareto Approaches
Multi-Objective AI Planning: Comparing Aggregation and Pareto Approaches
M. Khouadjia
Marc Schoenauer
V. Vidal
Johann Dréo
P. Savéant
45
3
0
06 May 2013
BliStr: The Blind Strategymaker
BliStr: The Blind Strategymaker
Josef Urban
96
65
0
12 Jan 2013
Previous
1234
Next