ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1401.5508
  4. Cited By
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
v1v2v3 (latest)

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression

21 January 2014
Arno Solin
Simo Särkkä
ArXiv (abs)PDFHTML

Papers citing "Hilbert Space Methods for Reduced-Rank Gaussian Process Regression"

50 / 113 papers shown
Title
Linear Time Kernel Matrix Approximation via Hyperspherical Harmonics
Linear Time Kernel Matrix Approximation via Hyperspherical Harmonics
J. Ryan
Anil Damle
48
0
0
08 Feb 2022
A Kernel-Based Approach for Modelling Gaussian Processes with Functional Information
A Kernel-Based Approach for Modelling Gaussian Processes with Functional Information
J. Nicholson
P. Kiessler
D. Brown
GP
63
3
0
26 Jan 2022
When are Iterative Gaussian Processes Reliably Accurate?
When are Iterative Gaussian Processes Reliably Accurate?
Wesley J. Maddox
Sanyam Kapoor
A. Wilson
69
10
0
31 Dec 2021
Stochastic Processes Under Linear Differential Constraints : Application
  to Gaussian Process Regression for the 3 Dimensional Free Space Wave Equation
Stochastic Processes Under Linear Differential Constraints : Application to Gaussian Process Regression for the 3 Dimensional Free Space Wave Equation
Iain Henderson
P. Noble
O. Roustant
47
1
0
23 Nov 2021
Contextual Bayesian optimization with binary outputs
Contextual Bayesian optimization with binary outputs
T. Fauvel
M. Chalk
67
3
0
05 Nov 2021
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Yonghui Fan
Yalin Wang
33
2
0
30 Oct 2021
Periodic Activation Functions Induce Stationarity
Periodic Activation Functions Induce Stationarity
Lassi Meronen
Martin Trapp
Arno Solin
BDL
84
21
0
26 Oct 2021
Efficient Exploration in Binary and Preferential Bayesian Optimization
Efficient Exploration in Binary and Preferential Bayesian Optimization
T. Fauvel
M. Chalk
59
7
0
18 Oct 2021
GaussED: A Probabilistic Programming Language for Sequential
  Experimental Design
GaussED: A Probabilistic Programming Language for Sequential Experimental Design
Matthew A. Fisher
Onur Teymur
Chris J. Oates
87
1
0
15 Oct 2021
Efficient Fourier representations of families of Gaussian processes
Efficient Fourier representations of families of Gaussian processes
P. Greengard
77
3
0
28 Sep 2021
Low-rank statistical finite elements for scalable model-data synthesis
Low-rank statistical finite elements for scalable model-data synthesis
Connor Duffin
E. Cripps
T. Stemler
Mark Girolami
66
11
0
10 Sep 2021
Finite Element Representations of Gaussian Processes: Balancing
  Numerical and Statistical Accuracy
Finite Element Representations of Gaussian Processes: Balancing Numerical and Statistical Accuracy
D. Sanz-Alonso
Ruiyi Yang
56
12
0
06 Sep 2021
Large-Scale Learning with Fourier Features and Tensor Decompositions
Large-Scale Learning with Fourier Features and Tensor Decompositions
Frederiek Wesel
Kim Batselier
49
11
0
03 Sep 2021
Variational Inference at Glacier Scale
Variational Inference at Glacier Scale
D. Brinkerhoff
BDL
51
11
0
16 Aug 2021
Efficient reduced-rank methods for Gaussian processes with eigenfunction
  expansions
Efficient reduced-rank methods for Gaussian processes with eigenfunction expansions
P. Greengard
M. O’Neil
57
11
0
12 Aug 2021
Pathfinder: Parallel quasi-Newton variational inference
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang
Bob Carpenter
A. Gelman
Aki Vehtari
132
41
0
09 Aug 2021
Wasserstein-Splitting Gaussian Process Regression for Heterogeneous
  Online Bayesian Inference
Wasserstein-Splitting Gaussian Process Regression for Heterogeneous Online Bayesian Inference
Michael E. Kepler
Alec Koppel
Amrit Singh Bedi
D. Stilwell
26
3
0
26 Jul 2021
Spectrum Gaussian Processes Based On Tunable Basis Functions
Spectrum Gaussian Processes Based On Tunable Basis Functions
Wenqi Fang
Guanlin Wu
Jingjing Li
Ziyi Wang
Jiang Cao
Yang Ping
18
0
0
14 Jul 2021
Scalable Variational Gaussian Processes via Harmonic Kernel
  Decomposition
Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition
Shengyang Sun
Jiaxin Shi
A. Wilson
Roger C. Grosse
BDL
31
7
0
10 Jun 2021
Gaussian Processes on Hypergraphs
Gaussian Processes on Hypergraphs
Thomas Pinder
K. Turnbull
Christopher Nemeth
David Leslie
37
4
0
03 Jun 2021
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Vincent Dutordoir
J. Hensman
Mark van der Wilk
Carl Henrik Ek
Zoubin Ghahramani
N. Durrande
BDLUQCV
103
31
0
10 May 2021
Sparse Algorithms for Markovian Gaussian Processes
Sparse Algorithms for Markovian Gaussian Processes
William J. Wilkinson
Arno Solin
Vincent Adam
62
12
0
19 Mar 2021
Temporal Gaussian Process Regression in Logarithmic Time
Temporal Gaussian Process Regression in Logarithmic Time
Adrien Corenflos
Zheng Zhao
Simo Särkkä
60
3
0
19 Feb 2021
High-Dimensional Gaussian Process Inference with Derivatives
High-Dimensional Gaussian Process Inference with Derivatives
Filip de Roos
A. Gessner
Philipp Hennig
GP
56
17
0
15 Feb 2021
Gaussian Process Regression constrained by Boundary Value Problems
Gaussian Process Regression constrained by Boundary Value Problems
Mamikon A. Gulian
A. Frankel
L. Swiler
72
25
0
22 Dec 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
102
61
0
08 Nov 2020
Matérn Gaussian Processes on Graphs
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
I. Azangulov
Alexander Terenin
P. Mostowsky
M. Deisenroth
N. Durrande
51
82
0
29 Oct 2020
Stationary Activations for Uncertainty Calibration in Deep Learning
Stationary Activations for Uncertainty Calibration in Deep Learning
Lassi Meronen
Christabella Irwanto
Arno Solin
UQCVBDL
54
19
0
19 Oct 2020
Locally induced Gaussian processes for large-scale simulation
  experiments
Locally induced Gaussian processes for large-scale simulation experiments
D. Cole
R. Christianson
R. Gramacy
70
21
0
28 Aug 2020
Convergence of Sparse Variational Inference in Gaussian Processes
  Regression
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
82
74
0
01 Aug 2020
Orthogonally Decoupled Variational Fourier Features
Orthogonally Decoupled Variational Fourier Features
Dario Azzimonti
Manuel Schürch
A. Benavoli
Marco Zaffalon
20
0
0
13 Jul 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
71
56
0
30 Jun 2020
Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion
Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion
M. Emzir
Sari Lasanen
Z. Purisha
L. Roininen
Simo Särkkä
78
9
0
28 Jun 2020
Variational Orthogonal Features
Variational Orthogonal Features
David R. Burt
C. Rasmussen
Mark van der Wilk
BDLDRL
71
12
0
23 Jun 2020
Matérn Gaussian processes on Riemannian manifolds
Matérn Gaussian processes on Riemannian manifolds
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
126
123
0
17 Jun 2020
A Survey of Constrained Gaussian Process Regression: Approaches and
  Implementation Challenges
A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges
L. Swiler
Mamikon A. Gulian
A. Frankel
Cosmin Safta
J. Jakeman
GPAI4CE
104
106
0
16 Jun 2020
Sparse Gaussian Process Based On Hat Basis Functions
Sparse Gaussian Process Based On Hat Basis Functions
Wenqi Fang
Huiyun Li
Hui Huang
Shaobo Dang
Zhejun Huang
Zheng Wang
8
1
0
15 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
71
36
0
09 Jun 2020
Practical Hilbert space approximate Bayesian Gaussian processes for
  probabilistic programming
Practical Hilbert space approximate Bayesian Gaussian processes for probabilistic programming
Gabriel Riutort-Mayol
Paul-Christian Bürkner
Michael R. Andersen
Arno Solin
Aki Vehtari
84
72
0
23 Apr 2020
Consistent Online Gaussian Process Regression Without the Sample
  Complexity Bottleneck
Consistent Online Gaussian Process Regression Without the Sample Complexity Bottleneck
Alec Koppel
Hrusikesha Pradhan
K. Rajawat
34
32
0
23 Apr 2020
Gaussian Process Manifold Interpolation for Probabilistic Atrial
  Activation Maps and Uncertain Conduction Velocity
Gaussian Process Manifold Interpolation for Probabilistic Atrial Activation Maps and Uncertain Conduction Velocity
Sam Coveney
C. Corrado
C. Roney
D. O'Hare
Steven E. Williams
M. OÑeill
Steven Niederer
R. Clayton
J. Oakley
Richard D. Wilkinson
62
41
0
22 Apr 2020
A matrix-free approach to geostatistical filtering
A matrix-free approach to geostatistical filtering
M. Pereira
N. Desassis
C. Magneron
N. Palmer
23
1
0
06 Apr 2020
How Good are Low-Rank Approximations in Gaussian Process Regression?
How Good are Low-Rank Approximations in Gaussian Process Regression?
C. Daskalakis
P. Dellaportas
A. Panos
60
3
0
03 Apr 2020
Linearly Constrained Neural Networks
Linearly Constrained Neural Networks
J. Hendriks
Carl Jidling
A. Wills
Thomas B. Schon
103
35
0
05 Feb 2020
Conjugate Gradients for Kernel Machines
Conjugate Gradients for Kernel Machines
Simon Bartels
Philipp Hennig
66
4
0
14 Nov 2019
Deep kernel learning for integral measurements
Deep kernel learning for integral measurements
Carl Jidling
J. Hendriks
Thomas B. Schon
A. Wills
62
7
0
04 Sep 2019
The Use of Gaussian Processes in System Identification
The Use of Gaussian Processes in System Identification
Simo Särkkä
GPAI4TS
40
10
0
13 Jul 2019
Selecting the Metric in Hamiltonian Monte Carlo
Selecting the Metric in Hamiltonian Monte Carlo
Benjamin B. Bales
A. Pourzanjani
Aki Vehtari
Linda R. Petzold
39
6
0
28 May 2019
Neutron Transmission Strain Tomography for Non-Constant Stress-Free
  Lattice Spacing
Neutron Transmission Strain Tomography for Non-Constant Stress-Free Lattice Spacing
J. Hendriks
Carl Jidling
Thomas B. Schon
A. Wills
C. Wensrich
E. Kisi
19
6
0
15 May 2019
Know Your Boundaries: Constraining Gaussian Processes by Variational
  Harmonic Features
Know Your Boundaries: Constraining Gaussian Processes by Variational Harmonic Features
Arno Solin
Manon Kok
71
23
0
10 Apr 2019
Previous
123
Next