ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1402.0694
  4. Cited By
v1v2 (latest)

Particle Metropolis adjusted Langevin algorithms for state space models

4 February 2014
Christopher Nemeth
Paul Fearnhead
ArXiv (abs)PDFHTML

Papers citing "Particle Metropolis adjusted Langevin algorithms for state space models"

5 / 5 papers shown
Title
Enhanced SMC$^2$: Leveraging Gradient Information from Differentiable
  Particle Filters Within Langevin Proposals
Enhanced SMC2^22: Leveraging Gradient Information from Differentiable Particle Filters Within Langevin Proposals
Conor Rosato
Joshua Murphy
Alessandro Varsi
P. Horridge
Simon Maskell
96
4
0
24 Jul 2024
Efficient Learning of the Parameters of Non-Linear Models using
  Differentiable Resampling in Particle Filters
Efficient Learning of the Parameters of Non-Linear Models using Differentiable Resampling in Particle Filters
Conor Rosato
Vincent Beraud
P. Horridge
Thomas B. Schon
Simon Maskell
82
14
0
02 Nov 2021
A Common Derivation for Markov Chain Monte Carlo Algorithms with
  Tractable and Intractable Targets
A Common Derivation for Markov Chain Monte Carlo Algorithms with Tractable and Intractable Targets
K. Tran
BDL
69
2
0
07 Jul 2016
Augmentation Schemes for Particle MCMC
Augmentation Schemes for Particle MCMC
Paul Fearnhead
Loukia Meligkotsidou
90
19
0
29 Aug 2014
Particle Metropolis-Hastings using gradient and Hessian information
Particle Metropolis-Hastings using gradient and Hessian information
J. Dahlin
Fredrik Lindsten
Thomas B. Schon
164
47
0
04 Nov 2013
1