ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1402.7107
  4. Cited By
Compressible Generalized Hybrid Monte Carlo

Compressible Generalized Hybrid Monte Carlo

28 February 2014
Youhan Fang
J. Sanz-Serna
R. Skeel
ArXiv (abs)PDFHTML

Papers citing "Compressible Generalized Hybrid Monte Carlo"

15 / 15 papers shown
Title
Unadjusted Hamiltonian MCMC with Stratified Monte Carlo Time Integration
Unadjusted Hamiltonian MCMC with Stratified Monte Carlo Time Integration
Nawaf Bou-Rabee
Milo Marsden
93
13
0
20 Nov 2022
On Irreversible Metropolis Sampling Related to Langevin Dynamics
On Irreversible Metropolis Sampling Related to Langevin Dynamics
Zexi Song
Z. Tan
40
2
0
06 Jun 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
79
17
0
06 May 2021
A general perspective on the Metropolis-Hastings kernel
A general perspective on the Metropolis-Hastings kernel
Christophe Andrieu
Anthony Lee
Samuel Livingstone
86
25
0
29 Dec 2020
On the accept-reject mechanism for Metropolis-Hastings algorithms
On the accept-reject mechanism for Metropolis-Hastings algorithms
N. Glatt-Holtz
J. Krometis
Cecilia F. Mondaini
95
10
0
09 Nov 2020
Connecting the Dots: Numerical Randomized Hamiltonian Monte Carlo with
  State-Dependent Event Rates
Connecting the Dots: Numerical Randomized Hamiltonian Monte Carlo with State-Dependent Event Rates
T. S. Kleppe
58
12
0
04 May 2020
Markov chain Monte Carlo algorithms with sequential proposals
Markov chain Monte Carlo algorithms with sequential proposals
Joonha Park
Yves F. Atchadé
BDL
50
13
0
15 Jul 2019
Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond
  the reversible scenario
Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond the reversible scenario
Christophe Andrieu
Samuel Livingstone
75
28
0
14 Jun 2019
Geometric integrators and the Hamiltonian Monte Carlo method
Geometric integrators and the Hamiltonian Monte Carlo method
Nawaf Bou-Rabee
J. Sanz-Serna
78
98
0
14 Nov 2017
Modified Hamiltonian Monte Carlo for Bayesian inference
Modified Hamiltonian Monte Carlo for Bayesian inference
Tijana Radivojević
E. Akhmatskaya
127
31
0
13 Jun 2017
Geometry and Dynamics for Markov Chain Monte Carlo
Geometry and Dynamics for Markov Chain Monte Carlo
Alessandro Barp
François‐Xavier Briol
A. Kennedy
Mark Girolami
AI4CE
88
31
0
08 May 2017
On the convergence of Hamiltonian Monte Carlo
On the convergence of Hamiltonian Monte Carlo
Alain Durmus
Eric Moulines
E. Saksman
99
70
0
29 Apr 2017
Recycling intermediate steps to improve Hamiltonian Monte Carlo
Recycling intermediate steps to improve Hamiltonian Monte Carlo
A. Nishimura
David B. Dunson
62
10
0
21 Nov 2015
Moment conditions and Bayesian nonparametrics
Moment conditions and Bayesian nonparametrics
L. Bornn
N. Shephard
R. Solgi
115
19
0
30 Jul 2015
Emulation of Higher-Order Tensors in Manifold Monte Carlo Methods for
  Bayesian Inverse Problems
Emulation of Higher-Order Tensors in Manifold Monte Carlo Methods for Bayesian Inverse Problems
Shiwei Lan
T. Bui-Thanh
M. Christie
Mark Girolami
116
58
0
22 Jul 2015
1