Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1403.2150
Cited By
Constraint-based Causal Discovery from Multiple Interventions over Overlapping Variable Sets
10 March 2014
Sofia Triantafillou
Ioannis Tsamardinos
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Constraint-based Causal Discovery from Multiple Interventions over Overlapping Variable Sets"
50 / 58 papers shown
Title
Flow-Based Non-stationary Temporal Regime Causal Structure Learning
Abdellah Rahmani
P. Frossard
AI4TS
CML
24
0
0
20 Jun 2025
Constraint-based causal discovery with tiered background knowledge and latent variables in single or overlapping datasets
Christine W. Bang
Vanessa Didelez
CML
158
0
0
27 Mar 2025
When Selection Meets Intervention: Additional Complexities in Causal Discovery
Haoyue Dai
Ignavier Ng
Jianle Sun
Zeyu Tang
Gongxu Luo
Xinshuai Dong
Peter Spirtes
Kun Zhang
CML
116
0
0
10 Mar 2025
Causal Temporal Regime Structure Learning
Abdellah Rahmani
Pascal Frossard
CML
256
2
0
20 Feb 2025
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Numair Sani
Daniel Malinsky
I. Shpitser
CML
192
16
0
10 Jan 2025
Causal Modeling in Multi-Context Systems: Distinguishing Multiple Context-Specific Causal Graphs which Account for Observational Support
Martin Rabel
Wiebke Günther
Jakob Runge
Andreas Gerhardus
31
0
0
27 Oct 2024
MissNODAG: Differentiable Cyclic Causal Graph Learning from Incomplete Data
Muralikrishnna G. Sethuraman
Razieh Nabi
Faramarz Fekri
CML
OOD
71
0
0
24 Oct 2024
Interventional Causal Structure Discovery over Graphical Models with Convergence and Optimality Guarantees
Qiu Chengbo
Yang Kai
CML
88
0
0
09 Aug 2024
Learning Cyclic Causal Models from Incomplete Data
Muralikrishnna G. Sethuraman
Faramarz Fekri
OOD
CML
48
1
0
23 Feb 2024
Towards Automated Causal Discovery: a case study on 5G telecommunication data
Konstantina Biza
Antonios Ntroumpogiannis
Sofia Triantafillou
Ioannis Tsamardinos
62
0
0
22 Feb 2024
A Versatile Causal Discovery Framework to Allow Causally-Related Hidden Variables
Xinshuai Dong
Erdun Gao
Ignavier Ng
Xiangchen Song
Yujia Zheng
Songyao Jin
Roberto Legaspi
Peter Spirtes
Kun Zhang
BDL
CML
105
13
0
18 Dec 2023
Federated Causality Learning with Explainable Adaptive Optimization
Dezhi Yang
Xintong He
Jun Wang
Guoxian Yu
C. Domeniconi
Jinglin Zhang
FedML
CML
67
7
0
09 Dec 2023
Stable Differentiable Causal Discovery
Achille Nazaret
Justin Hong
Elham Azizi
David M. Blei
CML
104
10
0
17 Nov 2023
Causal discovery using dynamically requested knowledge
N. K. Kitson
Anthony C. Constantinou
CML
41
1
0
17 Oct 2023
Structural transfer learning of non-Gaussian DAG
Mingyang Ren
Xin He
Junhui Wang
CML
43
0
0
16 Oct 2023
Projecting infinite time series graphs to finite marginal graphs using number theory
Andreas Gerhardus
Jonas Wahl
Sofia Faltenbacher
Urmi Ninad
Jakob Runge
AI4TS
56
3
0
09 Oct 2023
Front-door Adjustment Beyond Markov Equivalence with Limited Graph Knowledge
Abhin Shah
Karthikeyan Shanmugam
Murat Kocaoglu
CML
77
7
0
19 Jun 2023
Reinterpreting causal discovery as the task of predicting unobserved joint statistics
Dominik Janzing
P. M. Faller
L. C. Vankadara
CML
100
3
0
11 May 2023
A Survey of Methods, Challenges and Perspectives in Causality
Gaël Gendron
Michael Witbrock
Gillian Dobbie
OOD
AI4CE
CML
82
13
0
01 Feb 2023
NODAGS-Flow: Nonlinear Cyclic Causal Structure Learning
Muralikrishnna G. Sethuraman
Romain Lopez
Ramkumar Veppathur Mohan
Faramarz Fekri
Tommaso Biancalani
Jan-Christian Hütter
CML
79
12
0
04 Jan 2023
Towards Privacy-Aware Causal Structure Learning in Federated Setting
Jianli Huang
Xianjie Guo
Kui Yu
Fuyuan Cao
Jiye Liang
FedML
68
9
0
13 Nov 2022
Formalizing Statistical Causality via Modal Logic
Yusuke Kawamoto
Sato Tetsuya
Kohei Suenaga
CML
LRM
129
2
0
30 Oct 2022
Valid Inference after Causal Discovery
Paula Gradu
Tijana Zrnic
Yixin Wang
Michael I. Jordan
CML
81
8
0
11 Aug 2022
XInsight: eXplainable Data Analysis Through The Lens of Causality
Pingchuan Ma
Rui Ding
Shuai Wang
Shi Han
Dongmei Zhang
CML
76
21
0
26 Jul 2022
Causal Structure Learning: a Combinatorial Perspective
C. Squires
Caroline Uhler
CML
120
47
0
02 Jun 2022
Differentiable Invariant Causal Discovery
Yu Wang
An Zhang
Xiang Wang
Yancheng Yuan
Xiangnan He
Tat-Seng Chua
OOD
CML
135
2
0
31 May 2022
Causal Inference Through the Structural Causal Marginal Problem
Luigi Gresele
Julius von Kügelgen
Jonas M. Kubler
Elke Kirschbaum
Bernhard Schölkopf
Dominik Janzing
100
20
0
02 Feb 2022
Hybrid Bayesian network discovery with latent variables by scoring multiple interventions
Kiattikun Chobtham
Anthony C. Constantinou
N. K. Kitson
BDL
38
3
0
20 Dec 2021
FedDAG: Federated DAG Structure Learning
Erdun Gao
Junjia Chen
Li Shen
Tongliang Liu
Biwei Huang
H. Bondell
FedML
87
17
0
07 Dec 2021
A Fast Non-parametric Approach for Local Causal Structure Learning
Mona Azadkia
Armeen Taeb
Peter Buhlmann
CML
64
3
0
29 Nov 2021
Towards Robust and Adaptive Motion Forecasting: A Causal Representation Perspective
Yuejiang Liu
Riccardo Cadei
Jonas Schweizer
Sherwin Bahmani
Alexandre Alahi
OOD
TTA
106
53
0
29 Nov 2021
Towards Federated Bayesian Network Structure Learning with Continuous Optimization
Ignavier Ng
Kun Zhang
FedML
91
38
0
18 Oct 2021
A survey of Bayesian Network structure learning
N. K. Kitson
Anthony C. Constantinou
Zhi-gao Guo
Yang Liu
Kiattikun Chobtham
CML
106
198
0
23 Sep 2021
Efficient Neural Causal Discovery without Acyclicity Constraints
Phillip Lippe
Taco S. Cohen
E. Gavves
CML
102
72
0
22 Jul 2021
Obtaining Causal Information by Merging Datasets with MAXENT
Sergio Hernan Garrido Mejia
Elke Kirschbaum
Dominik Janzing
CML
123
10
0
15 Jul 2021
Causal Markov Boundaries
Sofia Triantafillou
Fattaneh Jabbari
Gregory F. Cooper
CML
OOD
55
5
0
12 Mar 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
147
305
0
03 Mar 2021
Causal learning with sufficient statistics: an information bottleneck approach
D. Chicharro
M. Besserve
S. Panzeri
CML
52
5
0
12 Oct 2020
Differentiable Causal Discovery from Interventional Data
P. Brouillard
Sébastien Lachapelle
Alexandre Lacoste
Simon Lacoste-Julien
Alexandre Drouin
CML
99
191
0
03 Jul 2020
Combining Experts' Causal Judgments
Dalal Alrajeh
Hana Chockler
Joseph Y. Halpern
CML
51
19
0
20 May 2020
Combining the Causal Judgments of Experts with Possibly Different Focus Areas
Meir Friedenberg
Joseph Y. Halpern
CML
40
4
0
20 May 2020
Learning Adjustment Sets from Observational and Limited Experimental Data
Sofia Triantafillou
Gregory F. Cooper
CML
43
7
0
18 May 2020
Probabilistic Reasoning across the Causal Hierarchy
D. Ibeling
Thomas Icard
LRM
AI4CE
57
31
0
09 Jan 2020
Towards Robust Relational Causal Discovery
Sanghack Lee
Vasant Honavar
72
9
0
05 Dec 2019
Integrating overlapping datasets using bivariate causal discovery
Anish Dhir
Ciarán M. Gilligan-Lee
CML
57
20
0
24 Oct 2019
Learning Bayesian Networks with Low Rank Conditional Probability Tables
Adarsh Barik
Jean Honorio
102
6
0
29 May 2019
Causal Effect Identification from Multiple Incomplete Data Sources: A General Search-based Approach
Santtu Tikka
Antti Hyttinen
Juha Karvanen
CML
150
31
0
04 Feb 2019
Causal Discovery with a Mixture of DAGs
Eric V. Strobl
CML
70
17
0
28 Jan 2019
Removing Hidden Confounding by Experimental Grounding
Nathan Kallus
A. Puli
Uri Shalit
CML
115
147
0
27 Oct 2018
Characterizing and Learning Equivalence Classes of Causal DAGs under Interventions
Karren D. Yang
Abigail Katoff
Caroline Uhler
CML
81
103
0
17 Feb 2018
1
2
Next