Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1403.2660
Cited By
v1
v2
v3 (latest)
Robust and Scalable Bayes via a Median of Subset Posterior Measures
11 March 2014
Stanislav Minsker
Sanvesh Srivastava
Lizhen Lin
David B. Dunson
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Robust and Scalable Bayes via a Median of Subset Posterior Measures"
42 / 42 papers shown
Title
Robust Estimation in metric spaces: Achieving Exponential Concentration with a Fréchet Median
Jakwang Kim
Jiyoung Park
Anirban Bhattacharya
57
1
0
19 Apr 2025
Robust and Scalable Variational Bayes
Carlos Misael Madrid Padilla
Shitao Fan
Lizhen Lin
118
0
0
16 Apr 2025
Learning with Sparsely Permuted Data: A Robust Bayesian Approach
Abhisek Chakraborty
Saptati Datta
68
0
0
16 Sep 2024
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
79
4
0
21 Apr 2023
Robust probabilistic inference via a constrained transport metric
Abhisek Chakraborty
A. Bhattacharya
D. Pati
86
3
0
17 Mar 2023
Pigeonhole Stochastic Gradient Langevin Dynamics for Large Crossed Mixed Effects Models
Xinyu Zhang
Cheng Li
69
0
0
18 Dec 2022
Asynchronous and Distributed Data Augmentation for Massive Data Settings
Jiayuan Zhou
Kshitij Khare
Sanvesh Srivastava
68
3
0
18 Sep 2021
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Chunlei Wang
Sanvesh Srivastava
68
9
0
30 May 2021
Divide-and-conquer methods for big data analysis
Xueying Chen
Jerry Q. Cheng
Min‐ge Xie
50
9
0
22 Feb 2021
A Scalable Partitioned Approach to Model Massive Nonstationary Non-Gaussian Spatial Datasets
B. Lee
Jaewoo Park
93
11
0
26 Nov 2020
A Linear Transportation
L
p
\mathrm{L}^p
L
p
Distance for Pattern Recognition
Oliver M. Crook
Mihai Cucuringu
Tim Hurst
Carola-Bibiane Schönlieb
Matthew Thorpe
K. Zygalakis
54
7
0
23 Sep 2020
Robust Optimization and Inference on Manifolds
Lizhen Lin
Drew Lazar
Bayan Sarpabayeva
David B. Dunson
38
7
0
11 Jun 2020
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
102
14
0
08 Jun 2020
Distributed Bayesian Varying Coefficient Modeling Using a Gaussian Process Prior
Rajarshi Guhaniyogi
Cheng Li
T. Savitsky
Sanvesh Srivastava
49
21
0
01 Jun 2020
Informed Proposal Monte Carlo
Sarouyeh Khoshkholgh
A. Zunino
K. Mosegaard
15
14
0
29 May 2020
Quantifying Observed Prior Impact
David E. Jones
R. Trangucci
Yang Chen
13
4
0
29 Jan 2020
An Algorithm for Distributed Bayesian Inference in Generalized Linear Models
N. Shyamalkumar
Sanvesh Srivastava
38
0
0
18 Nov 2019
Efficiency Assessment of Approximated Spatial Predictions for Large Datasets
Yiping Hong
Sameh Abdulah
M. Genton
Ying Sun
85
10
0
11 Nov 2019
Bayesian Robustness: A Nonasymptotic Viewpoint
Kush S. Bhatia
Yian Ma
Anca Dragan
Peter L. Bartlett
Michael I. Jordan
49
7
0
27 Jul 2019
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
681
5,959
0
25 Jul 2019
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
83
139
0
16 Jul 2019
Semi-dual Regularized Optimal Transport
Marco Cuturi
Gabriel Peyré
OT
158
51
0
13 Nov 2018
Communication Efficient Parallel Algorithms for Optimization on Manifolds
B. Saparbayeva
M. Zhang
Lizhen Lin
55
4
0
26 Oct 2018
Practical bounds on the error of Bayesian posterior approximations: A nonasymptotic approach
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
82
28
0
25 Sep 2018
Solving Non-smooth Constrained Programs with Lower Complexity than
O
(
1
/
ε
)
\mathcal{O}(1/\varepsilon)
O
(
1/
ε
)
: A Primal-Dual Homotopy Smoothing Approach
Xiaohan Wei
Hao Yu
Qing Ling
M. Neely
53
16
0
05 Sep 2018
An asymptotic analysis of distributed nonparametric methods
Botond Szabó
Harry Van Zanten
77
46
0
08 Nov 2017
Generalized Bouncy Particle Sampler
Changye Wu
Christian P. Robert
93
25
0
15 Jun 2017
Bayesian Bootstraps for Massive Data
Andrés F. Barrientos
Víctor Pena
43
7
0
28 May 2017
Distributed Statistical Estimation and Rates of Convergence in Normal Approximation
Stanislav Minsker
Nate Strawn
86
67
0
09 Apr 2017
Distributed Bayesian Matrix Factorization with Limited Communication
Xiangju Qin
P. Blomstedt
Eemeli Leppaaho
P. Parviainen
Samuel Kaski
75
5
0
02 Mar 2017
Joining and splitting models with Markov melding
Robert J. B. Goudie
A. Presanis
David J. Lunn
Daniela De Angelis
L. Wernisch
59
30
0
22 Jul 2016
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
96
233
0
11 Jul 2016
Robust Probabilistic Modeling with Bayesian Data Reweighting
Yixin Wang
A. Kucukelbir
David M. Blei
OOD
NoLa
60
12
0
13 Jun 2016
Bayesian inference in hierarchical models by combining independent posteriors
Ritabrata Dutta
P. Blomstedt
Samuel Kaski
TPM
43
2
0
30 Mar 2016
Model-free inference on extreme dependence via waiting times
J. Johndrow
R. Wolpert
19
0
0
24 Dec 2015
Sequential Markov Chain Monte Carlo for Bayesian Filtering with Massive Data
A. Freitas
Françcois Septier
Lyudmila Mihaylova
24
4
0
08 Dec 2015
Nonparametric Bayesian Aggregation for Massive Data
Zuofeng Shang
Botao Hao
Guang Cheng
35
8
0
17 Aug 2015
Optimal approximating Markov chains for Bayesian inference
J. Johndrow
Jonathan C. Mattingly
Sayan Mukherjee
David B. Dunson
98
31
0
13 Aug 2015
Accelerated dimension-independent adaptive Metropolis
Yuxin Chen
David E. Keyes
K. Law
Hatem Ltaief
52
22
0
18 Jun 2015
Bayesian computation: a perspective on the current state, and sampling backwards and forwards
P. Green
K. Latuszyñski
Marcelo Pereyra
Christian P. Robert
129
21
0
04 Feb 2015
Expectation propagation as a way of life: A framework for Bayesian inference on partitioned data
Aki Vehtari
Andrew Gelman
Tuomas Sivula
Pasi Jylänki
Dustin Tran
Swupnil Sahai
Paul Blomstedt
John P. Cunningham
D. Schiminovich
Christian P. Robert
110
25
0
16 Dec 2014
Consistency and fluctuations for stochastic gradient Langevin dynamics
Yee Whye Teh
Alexandre Hoang Thiery
Sebastian J. Vollmer
124
235
0
01 Sep 2014
1