ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1404.5165
  4. Cited By
GP-Localize: Persistent Mobile Robot Localization using Online Sparse
  Gaussian Process Observation Model
v1v2 (latest)

GP-Localize: Persistent Mobile Robot Localization using Online Sparse Gaussian Process Observation Model

AAAI Conference on Artificial Intelligence (AAAI), 2014
21 April 2014
Nuo Xu
K. H. Low
Jie Chen
Keng Kiat Lim
Etkin Baris Ozgul
ArXiv (abs)PDFHTML

Papers citing "GP-Localize: Persistent Mobile Robot Localization using Online Sparse Gaussian Process Observation Model"

21 / 21 papers shown
Enabling On-Chip High-Frequency Adaptive Linear Optimal Control via
  Linearized Gaussian Process
Enabling On-Chip High-Frequency Adaptive Linear Optimal Control via Linearized Gaussian Process
Yuan Gao
Yinyi Lai
Jun Wang
Yini Fang
208
1
0
23 Sep 2024
HGP-RL: Distributed Hierarchical Gaussian Processes for Wi-Fi-based
  Relative Localization in Multi-Robot Systems
HGP-RL: Distributed Hierarchical Gaussian Processes for Wi-Fi-based Relative Localization in Multi-Robot SystemsIEEE/RJS International Conference on Intelligent RObots and Systems (IROS), 2023
Ehsan Latif
Ramviyas Parasuraman
184
3
0
20 Jul 2023
Bayesian Optimization under Stochastic Delayed Feedback
Bayesian Optimization under Stochastic Delayed FeedbackInternational Conference on Machine Learning (ICML), 2022
Arun Verma
Zhongxiang Dai
Bryan Kian Hsiang Low
219
15
0
19 Jun 2022
Conditioning Sparse Variational Gaussian Processes for Online
  Decision-making
Conditioning Sparse Variational Gaussian Processes for Online Decision-makingNeural Information Processing Systems (NeurIPS), 2021
Wesley J. Maddox
Samuel Stanton
A. Wilson
209
37
0
28 Oct 2021
Incremental Ensemble Gaussian Processes
Incremental Ensemble Gaussian Processes
Qin Lu
G. V. Karanikolas
G. Giannakis
215
28
0
13 Oct 2021
Convolutional Normalizing Flows for Deep Gaussian Processes
Convolutional Normalizing Flows for Deep Gaussian ProcessesIEEE International Joint Conference on Neural Network (IJCNN), 2021
Haibin Yu
Dapeng Liu
Yizhou Chen
K. H. Low
Patrick Jaillet
BDL
201
6
0
17 Apr 2021
Kernel Interpolation for Scalable Online Gaussian Processes
Kernel Interpolation for Scalable Online Gaussian ProcessesInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Samuel Stanton
Wesley J. Maddox
Ian A. Delbridge
A. Wilson
GP
201
35
0
02 Mar 2021
Revisiting the Sample Complexity of Sparse Spectrum Approximation of
  Gaussian Processes
Revisiting the Sample Complexity of Sparse Spectrum Approximation of Gaussian ProcessesNeural Information Processing Systems (NeurIPS), 2020
Q. Hoang
T. Hoang
Hai Pham
David P. Woodruff
159
6
0
17 Nov 2020
Variational Bayesian Unlearning
Variational Bayesian UnlearningNeural Information Processing Systems (NeurIPS), 2020
Q. Nguyen
Bryan Kian Hsiang Low
Patrick Jaillet
BDLMU
249
156
0
24 Oct 2020
Private Outsourced Bayesian Optimization
Private Outsourced Bayesian OptimizationInternational Conference on Machine Learning (ICML), 2020
D. Kharkovskii
Zhongxiang Dai
K. H. Low
193
25
0
24 Oct 2020
Federated Bayesian Optimization via Thompson Sampling
Federated Bayesian Optimization via Thompson SamplingNeural Information Processing Systems (NeurIPS), 2020
Zhongxiang Dai
K. H. Low
Patrick Jaillet
FedML
443
132
0
20 Oct 2020
R2-B2: Recursive Reasoning-Based Bayesian Optimization for No-Regret
  Learning in Games
R2-B2: Recursive Reasoning-Based Bayesian Optimization for No-Regret Learning in Games
Zhongxiang Dai
Yizhou Chen
K. H. Low
Patrick Jaillet
Teck-Hua Ho
187
28
0
30 Jun 2020
Nonmyopic Gaussian Process Optimization with Macro-Actions
Nonmyopic Gaussian Process Optimization with Macro-ActionsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2020
D. Kharkovskii
Chun Kai Ling
K. H. Low
205
19
0
22 Feb 2020
Implicit Posterior Variational Inference for Deep Gaussian Processes
Implicit Posterior Variational Inference for Deep Gaussian ProcessesNeural Information Processing Systems (NeurIPS), 2019
Haibin Yu
Yizhou Chen
Zhongxiang Dai
K. H. Low
Patrick Jaillet
216
44
0
26 Oct 2019
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPsIEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2018
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
410
806
0
03 Jul 2018
Decentralized High-Dimensional Bayesian Optimization with Factor Graphs
Decentralized High-Dimensional Bayesian Optimization with Factor Graphs
T. Hoang
Q. Hoang
Ruofei Ouyang
K. H. Low
242
59
0
19 Nov 2017
Gaussian Process Decentralized Data Fusion Meets Transfer Learning in
  Large-Scale Distributed Cooperative Perception
Gaussian Process Decentralized Data Fusion Meets Transfer Learning in Large-Scale Distributed Cooperative Perception
Ruofei Ouyang
K. H. Low
FedML
178
26
0
16 Nov 2017
Stochastic Variational Inference for Bayesian Sparse Gaussian Process
  Regression
Stochastic Variational Inference for Bayesian Sparse Gaussian Process Regression
Haibin Yu
T. Hoang
K. H. Low
Patrick Jaillet
BDL
353
24
0
01 Nov 2017
Near-Optimal Active Learning of Multi-Output Gaussian Processes
Near-Optimal Active Learning of Multi-Output Gaussian Processes
Yehong Zhang
T. Hoang
K. H. Low
Mohan Kankanhalli
167
39
0
21 Nov 2015
Gaussian Process Planning with Lipschitz Continuous Reward Functions:
  Towards Unifying Bayesian Optimization, Active Learning, and Beyond
Gaussian Process Planning with Lipschitz Continuous Reward Functions: Towards Unifying Bayesian Optimization, Active Learning, and Beyond
Chun Kai Ling
K. H. Low
Patrick Jaillet
178
80
0
21 Nov 2015
Parallel Gaussian Process Regression for Big Data: Low-Rank
  Representation Meets Markov Approximation
Parallel Gaussian Process Regression for Big Data: Low-Rank Representation Meets Markov ApproximationAAAI Conference on Artificial Intelligence (AAAI), 2014
K. H. Low
J. Yu
Jie Chen
Patrick Jaillet
168
54
0
17 Nov 2014
1
Page 1 of 1