Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1406.3816
Cited By
Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning
15 June 2014
Francesco Orabona
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning"
48 / 48 papers shown
Title
LightSAM: Parameter-Agnostic Sharpness-Aware Minimization
Yifei Cheng
Li Shen
Hao Sun
Nan Yin
Xiaochun Cao
Enhong Chen
AAML
44
0
0
30 May 2025
Efficiently Solving Discounted MDPs with Predictions on Transition Matrices
Lixing Lyu
Jiashuo Jiang
Wang Chi Cheung
87
1
0
24 Feb 2025
Normalized Gradients for All
Francesco Orabona
110
10
0
10 Aug 2023
Optimistically Tempered Online Learning
Maxime Haddouche
Olivier Wintenberger
Benjamin Guedj
OnRL
78
1
0
18 Jan 2023
Making SGD Parameter-Free
Y. Carmon
Oliver Hinder
98
47
0
04 May 2022
Implicit Parameter-free Online Learning with Truncated Linear Models
Keyi Chen
Ashok Cutkosky
Francesco Orabona
80
10
0
19 Mar 2022
Parameter-free Online Linear Optimization with Side Information via Universal Coin Betting
J. Jon Ryu
Alankrita Bhatt
Young-Han Kim
59
1
0
04 Feb 2022
Understanding AdamW through Proximal Methods and Scale-Freeness
Zhenxun Zhuang
Mingrui Liu
Ashok Cutkosky
Francesco Orabona
93
72
0
31 Jan 2022
PDE-Based Optimal Strategy for Unconstrained Online Learning
Zhiyu Zhang
Ashok Cutkosky
I. Paschalidis
100
27
0
19 Jan 2022
Improved Learning Rates for Stochastic Optimization: Two Theoretical Viewpoints
Shaojie Li
Yong Liu
105
13
0
19 Jul 2021
Nonparametric Regression with Shallow Overparameterized Neural Networks Trained by GD with Early Stopping
Ilja Kuzborskij
Csaba Szepesvári
107
7
0
12 Jul 2021
Model Selection for Generic Contextual Bandits
Avishek Ghosh
Abishek Sankararaman
Kannan Ramchandran
79
6
0
07 Jul 2021
MetaGrad: Adaptation using Multiple Learning Rates in Online Learning
T. Erven
Wouter M. Koolen
Dirk van der Hoeven
ODL
109
23
0
12 Feb 2021
Pareto Optimal Model Selection in Linear Bandits
Yinglun Zhu
Robert D. Nowak
43
14
0
12 Feb 2021
AutonoML: Towards an Integrated Framework for Autonomous Machine Learning
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
94
17
0
23 Dec 2020
Online Linear Optimization with Many Hints
Aditya Bhaskara
Ashok Cutkosky
Ravi Kumar
Manish Purohit
150
18
0
06 Oct 2020
Online Parameter-Free Learning of Multiple Low Variance Tasks
Giulia Denevi
Dimitris Stamos
Massimiliano Pontil
99
0
0
11 Jul 2020
Fine-Grained Analysis of Stability and Generalization for Stochastic Gradient Descent
Yunwen Lei
Yiming Ying
MLT
99
129
0
15 Jun 2020
Better Parameter-free Stochastic Optimization with ODE Updates for Coin-Betting
K. Chen
John Langford
Francesco Orabona
91
22
0
12 Jun 2020
Problem-Complexity Adaptive Model Selection for Stochastic Linear Bandits
Avishek Ghosh
Abishek Sankararaman
Kannan Ramchandran
80
34
0
04 Jun 2020
Adaptive Online Learning with Varying Norms
Ashok Cutkosky
45
0
0
10 Feb 2020
Large-scale Kernel Methods and Applications to Lifelong Robot Learning
Raffaello Camoriano
84
1
0
11 Dec 2019
Variance Reduced Stochastic Proximal Algorithm for AUC Maximization
Soham Dan
Dushyant Sahoo
106
3
0
08 Nov 2019
Stochastic Proximal AUC Maximization
Yunwen Lei
Yiming Ying
56
26
0
14 Jun 2019
Model selection for contextual bandits
Dylan J. Foster
A. Krishnamurthy
Haipeng Luo
OffRL
216
90
0
03 Jun 2019
Matrix-Free Preconditioning in Online Learning
Ashok Cutkosky
Tamás Sarlós
ODL
98
16
0
29 May 2019
Combining Online Learning Guarantees
Ashok Cutkosky
83
27
0
24 Feb 2019
Beating SGD Saturation with Tail-Averaging and Minibatching
Nicole Mücke
Gergely Neu
Lorenzo Rosasco
106
37
0
22 Feb 2019
Adaptive scale-invariant online algorithms for learning linear models
Michal Kempka
W. Kotłowski
Manfred K. Warmuth
96
31
0
20 Feb 2019
Learning with SGD and Random Features
Luigi Carratino
Alessandro Rudi
Lorenzo Rosasco
86
78
0
17 Jul 2018
Automatic Gradient Boosting
Janek Thomas
Stefan Coors
B. Bischl
115
23
0
10 Jul 2018
Best of many worlds: Robust model selection for online supervised learning
Vidya Muthukumar
Mitas Ray
A. Sahai
Peter L. Bartlett
OffRL
80
8
0
22 May 2018
Online Learning: Sufficient Statistics and the Burkholder Method
Dylan J. Foster
Alexander Rakhlin
Karthik Sridharan
63
27
0
20 Mar 2018
Black-Box Reductions for Parameter-free Online Learning in Banach Spaces
Ashok Cutkosky
Francesco Orabona
109
148
0
17 Feb 2018
Distributed Stochastic Optimization via Adaptive SGD
Ashok Cutkosky
R. Busa-Fekete
FedML
87
21
0
16 Feb 2018
Parameter-free online learning via model selection
Dylan J. Foster
Satyen Kale
M. Mohri
Karthik Sridharan
152
61
0
30 Dec 2017
Online Learning Without Prior Information
Ashok Cutkosky
K. Boahen
ODL
62
74
0
07 Mar 2017
Online Convex Optimization with Unconstrained Domains and Losses
Ashok Cutkosky
K. Boahen
ODL
78
32
0
07 Mar 2017
On Structured Prediction Theory with Calibrated Convex Surrogate Losses
A. Osokin
Francis R. Bach
Simon Lacoste-Julien
102
61
0
07 Mar 2017
Data-Dependent Stability of Stochastic Gradient Descent
Ilja Kuzborskij
Christoph H. Lampert
MLT
155
166
0
05 Mar 2017
Alternative asymptotics for cointegration tests in large VARs
Junhong Lin
Lorenzo Rosasco
77
37
0
28 May 2016
Generalization Properties and Implicit Regularization for Multiple Passes SGM
Junhong Lin
Raffaello Camoriano
Lorenzo Rosasco
86
70
0
26 May 2016
MetaGrad: Multiple Learning Rates in Online Learning
T. Erven
Wouter M. Koolen
ODL
138
98
0
29 Apr 2016
Coin Betting and Parameter-Free Online Learning
Francesco Orabona
D. Pál
208
166
0
12 Feb 2016
Scale-Free Online Learning
Francesco Orabona
D. Pál
89
104
0
08 Jan 2016
Iterative Regularization for Learning with Convex Loss Functions
Junhong Lin
Lorenzo Rosasco
Ding-Xuan Zhou
102
43
0
31 Mar 2015
Achieving All with No Parameters: Adaptive NormalHedge
Haipeng Luo
Robert Schapire
ODL
83
18
0
20 Feb 2015
M-Power Regularized Least Squares Regression
Julien Audiffren
Hachem Kadri
50
1
0
09 Oct 2013
1