ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1406.4704
  4. Cited By
Bayesian estimation of discretely observed multi-dimensional diffusion
  processes using guided proposals
v1v2v3 (latest)

Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals

18 June 2014
Frank van der Meulen
Moritz Schauer
ArXiv (abs)PDFHTML

Papers citing "Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals"

32 / 32 papers shown
Title
Neural Guided Diffusion Bridges
Neural Guided Diffusion Bridges
Gefan Yang
Frank van der Meulen
Stefan Sommer
DiffM
92
0
0
17 Feb 2025
SDE Matching: Scalable and Simulation-Free Training of Latent Stochastic Differential Equations
SDE Matching: Scalable and Simulation-Free Training of Latent Stochastic Differential Equations
Grigory Bartosh
Dmitry Vetrov
C. A. Naesseth
121
0
0
04 Feb 2025
Meta-Posterior Consistency for the Bayesian Inference of Metastable System
Meta-Posterior Consistency for the Bayesian Inference of Metastable System
Zachary P Adams
Sayan Mukherjee
57
0
0
03 Aug 2024
Statistical algorithms for low-frequency diffusion data: A PDE approach
Statistical algorithms for low-frequency diffusion data: A PDE approach
Matteo Giordano
Sven Wang
69
4
0
02 May 2024
Score matching for sub-Riemannian bridge sampling
Score matching for sub-Riemannian bridge sampling
E. Grong
Karen Habermann
Stefan Sommer
73
2
0
23 Apr 2024
Efficient estimation for ergodic diffusion processes sampled at high
  frequency
Efficient estimation for ergodic diffusion processes sampled at high frequency
Michael Sorensen
29
1
0
09 Jan 2024
Towards Data-Conditional Simulation for ABC Inference in Stochastic
  Differential Equations
Towards Data-Conditional Simulation for ABC Inference in Stochastic Differential Equations
P. Jovanovski
Andrew Golightly
Umberto Picchini
61
1
0
16 Oct 2023
Consistent inference for diffusions from low frequency measurements
Consistent inference for diffusions from low frequency measurements
Richard Nickl
52
8
0
24 Oct 2022
Bridge Simulation and Metric Estimation on Lie Groups and Homogeneous
  Spaces
Bridge Simulation and Metric Estimation on Lie Groups and Homogeneous Spaces
Mathias Højgaard Jensen
Lennard Hilgendorf
S. Joshi
Stefan Sommer
154
1
0
01 Dec 2021
Simulating Diffusion Bridges with Score Matching
Simulating Diffusion Bridges with Score Matching
J. Heng
Valentin De Bortoli
Arnaud Doucet
James Thornton
117
45
0
14 Nov 2021
Flexible Bayesian inference for diffusion processes using splines
Flexible Bayesian inference for diffusion processes using splines
Paul A. Jenkins
M. Pollock
Gareth O. Roberts
37
1
0
10 Jun 2021
Inference for partially observed Riemannian Ornstein-Uhlenbeck
  diffusions of covariance matrices
Inference for partially observed Riemannian Ornstein-Uhlenbeck diffusions of covariance matrices
Mai Bui
Y. Pokern
P. Dellaportas
75
11
0
07 Apr 2021
Automatic Backward Filtering Forward Guiding for Markov processes and
  graphical models
Automatic Backward Filtering Forward Guiding for Markov processes and graphical models
Frank van der Meulen
Moritz Schauer
74
12
0
07 Oct 2020
Augmented pseudo-marginal Metropolis-Hastings for partially observed
  diffusion processes
Augmented pseudo-marginal Metropolis-Hastings for partially observed diffusion processes
Andrew Golightly
Chris Sherlock
65
3
0
11 Sep 2020
Score-Based Parameter Estimation for a Class of Continuous-Time State
  Space Models
Score-Based Parameter Estimation for a Class of Continuous-Time State Space Models
A. Beskos
Dan Crisan
Ajay Jasra
N. Kantas
Hamza Ruzayqat
DiffM
46
12
0
18 Aug 2020
Online Smoothing for Diffusion Processes Observed with Noise
Online Smoothing for Diffusion Processes Observed with Noise
S. Yonekura
A. Beskos
40
9
0
27 Mar 2020
A piecewise deterministic Monte Carlo method for diffusion bridges
A piecewise deterministic Monte Carlo method for diffusion bridges
J. Bierkens
Sebastiano Grazzi
Frank van der Meulen
Moritz Schauer
DiffM
83
22
0
16 Jan 2020
Bayesian nonparametric estimation in the current status continuous mark
  model
Bayesian nonparametric estimation in the current status continuous mark model
G. Jongbloed
Frank van der Meulen
L. Pang
61
1
0
23 Nov 2019
The Neural Moving Average Model for Scalable Variational Inference of
  State Space Models
The Neural Moving Average Model for Scalable Variational Inference of State Space Models
Tom Ryder
D. Prangle
Andrew Golightly
Isaac Matthews
BDLAI4TS
83
6
0
02 Oct 2019
Adaptive posterior contraction rates for empirical Bayesian drift
  estimation of a diffusion
Adaptive posterior contraction rates for empirical Bayesian drift estimation of a diffusion
J. van Waaij
48
2
0
27 Sep 2019
AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs
AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs
G. Abbati
Philippe Wenk
Michael A. Osborne
Andreas Krause
Bernhard Schölkopf
Stefan Bauer
DiffM
49
15
0
22 Feb 2019
Simulation of elliptic and hypo-elliptic conditional diffusions
Simulation of elliptic and hypo-elliptic conditional diffusions
J. Bierkens
Frank van der Meulen
Moritz Schauer
116
19
0
03 Oct 2018
Nonparametric statistical inference for drift vector fields of
  multi-dimensional diffusions
Nonparametric statistical inference for drift vector fields of multi-dimensional diffusions
Richard Nickl
Kolyan Ray
81
52
0
03 Oct 2018
Bayesian Inference for Diffusion Processes: Using Higher-Order
  Approximations for Transition Densities
Bayesian Inference for Diffusion Processes: Using Higher-Order Approximations for Transition Densities
Susanne Pieschner
Christiane Fuchs
26
6
0
06 Jun 2018
Nonparametric Bayesian volatility learning under microstructure noise
Nonparametric Bayesian volatility learning under microstructure noise
S. Gugushvili
Frank van der Meulen
Moritz Schauer
Peter Spreij
14
2
0
15 May 2018
Nonparametric Bayesian inference for Gamma-type Lévy subordinators
Nonparametric Bayesian inference for Gamma-type Lévy subordinators
Denis Belomestny
S. Gugushvili
Moritz Schauer
Peter Spreij
48
10
0
30 Apr 2018
Black-box Variational Inference for Stochastic Differential Equations
Black-box Variational Inference for Stochastic Differential Equations
Tom Ryder
Andrew Golightly
A. Mcgough
D. Prangle
91
58
0
09 Feb 2018
Nonparametric Bayesian volatility estimation
Nonparametric Bayesian volatility estimation
S. Gugushvili
Frank van der Meulen
Moritz Schauer
Peter Spreij
44
6
0
30 Jan 2018
Continuous-discrete smoothing of diffusions
Continuous-discrete smoothing of diffusions
Marcin Mider
Moritz Schauer
Frank van der Meulen
58
30
0
11 Dec 2017
On residual and guided proposals for diffusion bridge simulation
On residual and guided proposals for diffusion bridge simulation
Frank van der Meulen
Moritz Schauer
DiffM
28
4
0
16 Aug 2017
Nonparametric Bayesian estimation of a Hölder continuous diffusion
  coefficient
Nonparametric Bayesian estimation of a Hölder continuous diffusion coefficient
S. Gugushvili
Frank van der Meulen
Moritz Schauer
Peter Spreij
56
6
0
22 Jun 2017
Improved bridge constructs for stochastic differential equations
Improved bridge constructs for stochastic differential equations
G. Whitaker
Andrew Golightly
R. Boys
Chris Sherlock
55
42
0
30 Sep 2015
1