ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1406.4993
  4. Cited By
Divide-and-Conquer with Sequential Monte Carlo
v1v2 (latest)

Divide-and-Conquer with Sequential Monte Carlo

19 June 2014
Fredrik Lindsten
A. M. Johansen
C. A. Naesseth
Bonnie Kirkpatrick
Thomas B. Schon
J. Aston
Alexandre Bouchard-Côté
ArXiv (abs)PDFHTML

Papers citing "Divide-and-Conquer with Sequential Monte Carlo"

24 / 24 papers shown
Title
Divide-and-Conquer Predictive Coding: a structured Bayesian inference
  algorithm
Divide-and-Conquer Predictive Coding: a structured Bayesian inference algorithm
Eli Sennesh
Hao Wu
Tommaso Salvatori
74
0
0
11 Aug 2024
Learning and Sustaining Shared Normative Systems via Bayesian Rule
  Induction in Markov Games
Learning and Sustaining Shared Normative Systems via Bayesian Rule Induction in Markov Games
Ninell Oldenburg
Zhi-Xuan Tan
79
5
0
20 Feb 2024
PASOA- PArticle baSed Bayesian Optimal Adaptive design
PASOA- PArticle baSed Bayesian Optimal Adaptive design
Jacopo Iollo
Christophe Heinkelé
Pierre Alliez
Florence Forbes
83
2
0
11 Feb 2024
Using Autodiff to Estimate Posterior Moments, Marginals and Samples
Using Autodiff to Estimate Posterior Moments, Marginals and Samples
Sam Bowyer
Thomas Heap
Laurence Aitchison
63
1
0
26 Oct 2023
Massively Parallel Reweighted Wake-Sleep
Massively Parallel Reweighted Wake-Sleep
Thomas Heap
Gavin Leech
Laurence Aitchison
BDL
58
2
0
18 May 2023
A divide and conquer sequential Monte Carlo approach to high dimensional
  filtering
A divide and conquer sequential Monte Carlo approach to high dimensional filtering
F. R. Crucinio
A. M. Johansen
60
3
0
25 Nov 2022
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
Adrien Corenflos
Nicolas Chopin
Simo Särkkä
72
7
0
04 Feb 2022
The divide-and-conquer sequential Monte Carlo algorithm: theoretical
  properties and limit theorems
The divide-and-conquer sequential Monte Carlo algorithm: theoretical properties and limit theorems
Juan Kuntz
F. R. Crucinio
A. M. Johansen
79
11
0
29 Oct 2021
Divide-and-Conquer Fusion
Divide-and-Conquer Fusion
Ryan S.Y. Chan
M. Pollock
A. M. Johansen
Gareth O. Roberts
47
2
0
14 Oct 2021
Scalable Bayesian computation for crossed and nested hierarchical models
Scalable Bayesian computation for crossed and nested hierarchical models
O. Papaspiliopoulos
Timothée Stumpf-Fétizon
Giacomo Zanella
104
10
0
19 Mar 2021
Product-form estimators: exploiting independence to scale up Monte Carlo
Product-form estimators: exploiting independence to scale up Monte Carlo
Juan Kuntz
F. R. Crucinio
A. M. Johansen
107
11
0
23 Feb 2021
An invitation to sequential Monte Carlo samplers
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
132
68
0
23 Jul 2020
A Survey of Bayesian Statistical Approaches for Big Data
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
102
14
0
08 Jun 2020
Particle filter efficiency under limited communication
Particle filter efficiency under limited communication
Deborshee Sen
43
2
0
21 Apr 2019
Elements of Sequential Monte Carlo
Elements of Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
75
97
0
12 Mar 2019
Automated learning with a probabilistic programming language: Birch
Automated learning with a probabilistic programming language: Birch
Lawrence M. Murray
Thomas B. Schon
76
63
0
02 Oct 2018
Probabilistic learning of nonlinear dynamical systems using sequential
  Monte Carlo
Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo
Thomas B. Schon
Andreas Svensson
Lawrence M. Murray
Fredrik Lindsten
68
41
0
07 Mar 2017
Bayesian Probabilistic Numerical Methods
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
106
166
0
13 Feb 2017
High-dimensional Filtering using Nested Sequential Monte Carlo
High-dimensional Filtering using Nested Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
78
23
0
29 Dec 2016
On embedded hidden Markov models and particle Markov chain Monte Carlo
  methods
On embedded hidden Markov models and particle Markov chain Monte Carlo methods
Axel Finke
Arnaud Doucet
A. M. Johansen
64
11
0
27 Oct 2016
Bayesian modelling and quantification of Raman spectroscopy
Bayesian modelling and quantification of Raman spectroscopy
M. Moores
K. Gracie
Jake Carson
K. Faulds
D. Graham
Mark Girolami
16
11
0
25 Apr 2016
Inference Networks for Sequential Monte Carlo in Graphical Models
Inference Networks for Sequential Monte Carlo in Graphical Models
Brooks Paige
Frank Wood
BDL
167
110
0
22 Feb 2016
Error Bounds for Sequential Monte Carlo Samplers for Multimodal
  Distributions
Error Bounds for Sequential Monte Carlo Samplers for Multimodal Distributions
Daniel Paulin
Ajay Jasra
Alexandre Hoang Thiery
101
18
0
29 Sep 2015
Theory of Parallel Particle Filters for Hidden Markov Models
Theory of Parallel Particle Filters for Hidden Markov Models
H. Chan
Chiang-Wee Heng
Ajay Jasra
67
3
0
15 Sep 2014
1