Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1406.4993
Cited By
v1
v2 (latest)
Divide-and-Conquer with Sequential Monte Carlo
19 June 2014
Fredrik Lindsten
A. M. Johansen
C. A. Naesseth
Bonnie Kirkpatrick
Thomas B. Schon
J. Aston
Alexandre Bouchard-Côté
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Divide-and-Conquer with Sequential Monte Carlo"
24 / 24 papers shown
Title
Divide-and-Conquer Predictive Coding: a structured Bayesian inference algorithm
Eli Sennesh
Hao Wu
Tommaso Salvatori
74
0
0
11 Aug 2024
Learning and Sustaining Shared Normative Systems via Bayesian Rule Induction in Markov Games
Ninell Oldenburg
Zhi-Xuan Tan
79
5
0
20 Feb 2024
PASOA- PArticle baSed Bayesian Optimal Adaptive design
Jacopo Iollo
Christophe Heinkelé
Pierre Alliez
Florence Forbes
83
2
0
11 Feb 2024
Using Autodiff to Estimate Posterior Moments, Marginals and Samples
Sam Bowyer
Thomas Heap
Laurence Aitchison
63
1
0
26 Oct 2023
Massively Parallel Reweighted Wake-Sleep
Thomas Heap
Gavin Leech
Laurence Aitchison
BDL
58
2
0
18 May 2023
A divide and conquer sequential Monte Carlo approach to high dimensional filtering
F. R. Crucinio
A. M. Johansen
60
3
0
25 Nov 2022
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
Adrien Corenflos
Nicolas Chopin
Simo Särkkä
72
7
0
04 Feb 2022
The divide-and-conquer sequential Monte Carlo algorithm: theoretical properties and limit theorems
Juan Kuntz
F. R. Crucinio
A. M. Johansen
79
11
0
29 Oct 2021
Divide-and-Conquer Fusion
Ryan S.Y. Chan
M. Pollock
A. M. Johansen
Gareth O. Roberts
47
2
0
14 Oct 2021
Scalable Bayesian computation for crossed and nested hierarchical models
O. Papaspiliopoulos
Timothée Stumpf-Fétizon
Giacomo Zanella
104
10
0
19 Mar 2021
Product-form estimators: exploiting independence to scale up Monte Carlo
Juan Kuntz
F. R. Crucinio
A. M. Johansen
107
11
0
23 Feb 2021
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
132
68
0
23 Jul 2020
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
102
14
0
08 Jun 2020
Particle filter efficiency under limited communication
Deborshee Sen
43
2
0
21 Apr 2019
Elements of Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
75
97
0
12 Mar 2019
Automated learning with a probabilistic programming language: Birch
Lawrence M. Murray
Thomas B. Schon
76
63
0
02 Oct 2018
Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo
Thomas B. Schon
Andreas Svensson
Lawrence M. Murray
Fredrik Lindsten
68
41
0
07 Mar 2017
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
106
166
0
13 Feb 2017
High-dimensional Filtering using Nested Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
78
23
0
29 Dec 2016
On embedded hidden Markov models and particle Markov chain Monte Carlo methods
Axel Finke
Arnaud Doucet
A. M. Johansen
64
11
0
27 Oct 2016
Bayesian modelling and quantification of Raman spectroscopy
M. Moores
K. Gracie
Jake Carson
K. Faulds
D. Graham
Mark Girolami
16
11
0
25 Apr 2016
Inference Networks for Sequential Monte Carlo in Graphical Models
Brooks Paige
Frank Wood
BDL
167
110
0
22 Feb 2016
Error Bounds for Sequential Monte Carlo Samplers for Multimodal Distributions
Daniel Paulin
Ajay Jasra
Alexandre Hoang Thiery
101
18
0
29 Sep 2015
Theory of Parallel Particle Filters for Hidden Markov Models
H. Chan
Chiang-Wee Heng
Ajay Jasra
67
3
0
15 Sep 2014
1