ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1407.2864
  4. Cited By
Asynchronous Anytime Sequential Monte Carlo

Asynchronous Anytime Sequential Monte Carlo

10 July 2014
Brooks Paige
Frank Wood
Arnaud Doucet
Yee Whye Teh
ArXiv (abs)PDFHTML

Papers citing "Asynchronous Anytime Sequential Monte Carlo"

20 / 20 papers shown
Title
An invitation to sequential Monte Carlo samplers
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
134
68
0
23 Jul 2020
Planning as Inference in Epidemiological Models
Planning as Inference in Epidemiological Models
Frank Wood
Andrew Warrington
Saeid Naderiparizi
Christian D. Weilbach
Vaden Masrani
...
Adam Scibior
Boyan Beronov
John Grefenstette
Duncan Campbell
Alireza Nasseri
59
6
0
30 Mar 2020
Stochastically Differentiable Probabilistic Programs
Stochastically Differentiable Probabilistic Programs
David Tolpin
Yuanshuo Zhou
Hongseok Yang
BDL
39
0
0
02 Mar 2020
Deployable probabilistic programming
Deployable probabilistic programming
David Tolpin
TPM
104
7
0
20 Jun 2019
Neural Particle Smoothing for Sampling from Conditional Sequence Models
Neural Particle Smoothing for Sampling from Conditional Sequence Models
Chu-cheng Lin
Jason Eisner
BDL
65
12
0
28 Apr 2018
Bayesian Optimization for Probabilistic Programs
Bayesian Optimization for Probabilistic Programs
Tom Rainforth
T. Le
Jan-Willem van de Meent
Michael A. Osborne
Frank Wood
TPM
72
27
0
13 Jul 2017
Particle MCMC with Poisson Resampling: Parallelization and Continuous
  Time Models
Particle MCMC with Poisson Resampling: Parallelization and Continuous Time Models
M. Startek
B. Miasojedow
Wojciech Niemiro
123
0
0
06 Jul 2017
Smoothing with Couplings of Conditional Particle Filters
Smoothing with Couplings of Conditional Particle Filters
Pierre E. Jacob
Fredrik Lindsten
Thomas B. Schon
138
55
0
08 Jan 2017
Anytime Monte Carlo
Anytime Monte Carlo
Lawrence M. Murray
Sumeetpal S. Singh
Anthony Lee
91
6
0
10 Dec 2016
Inference Compilation and Universal Probabilistic Programming
Inference Compilation and Universal Probabilistic Programming
T. Le
A. G. Baydin
Frank Wood
UQCV
219
143
0
31 Oct 2016
Post-Inference Prior Swapping
Post-Inference Prior Swapping
Willie Neiswanger
Eric Xing
26
1
0
02 Jun 2016
Marginalized Particle Filtering and Related Filtering Techniques as
  Message Passing
Marginalized Particle Filtering and Related Filtering Techniques as Message Passing
G. Vitetta
Emilio Sirignano
Francesco Montorsi
Matteo Sola
38
8
0
10 May 2016
An Adaptive Resample-Move Algorithm for Estimating Normalizing Constants
An Adaptive Resample-Move Algorithm for Estimating Normalizing Constants
Marco Fraccaro
Ulrich Paquet
Ole Winther
26
2
0
07 Apr 2016
Inference Networks for Sequential Monte Carlo in Graphical Models
Inference Networks for Sequential Monte Carlo in Graphical Models
Brooks Paige
Frank Wood
BDL
175
110
0
22 Feb 2016
Adapting the Number of Particles in Sequential Monte Carlo Methods
  through an Online Scheme for Convergence Assessment
Adapting the Number of Particles in Sequential Monte Carlo Methods through an Online Scheme for Convergence Assessment
Victor Elvira
Joaquín Míguez
Petar M. Djurić
87
71
0
16 Sep 2015
Optimization Monte Carlo: Efficient and Embarrassingly Parallel
  Likelihood-Free Inference
Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference
Edward Meeds
Max Welling
177
36
0
11 Jun 2015
Maximum a Posteriori Estimation by Search in Probabilistic Programs
Maximum a Posteriori Estimation by Search in Probabilistic Programs
David Tolpin
Frank Wood
TPM
65
12
0
26 Apr 2015
Path Finding under Uncertainty through Probabilistic Inference
Path Finding under Uncertainty through Probabilistic Inference
David Tolpin
Brooks Paige
Jan-Willem van de Meent
Frank Wood
TPM
73
0
0
25 Feb 2015
Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs
Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs
David Tolpin
Jan-Willem van de Meent
Brooks Paige
Frank Wood
66
1
0
22 Jan 2015
Value Iteration with Options and State Aggregation
Value Iteration with Options and State Aggregation
K. Ciosek
David Silver
58
11
0
16 Jan 2015
1