ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1410.4744
  4. Cited By
mS2GD: Mini-Batch Semi-Stochastic Gradient Descent in the Proximal
  Setting

mS2GD: Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting

17 October 2014
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
    ODL
ArXiv (abs)PDFHTML

Papers citing "mS2GD: Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting"

11 / 11 papers shown
Title
AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias
  Estimation
AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias Estimation
Farshid Varno
Marzie Saghayi
Laya Rafiee
Sharut Gupta
Stan Matwin
Mohammad Havaei
FedML
146
31
0
27 Apr 2022
Stochastic, Distributed and Federated Optimization for Machine Learning
Stochastic, Distributed and Federated Optimization for Machine Learning
Jakub Konecný
FedML
83
38
0
04 Jul 2017
Projected Semi-Stochastic Gradient Descent Method with Mini-Batch Scheme
  under Weak Strong Convexity Assumption
Projected Semi-Stochastic Gradient Descent Method with Mini-Batch Scheme under Weak Strong Convexity Assumption
Jie Liu
Martin Takáč
ODL
117
4
0
16 Dec 2016
Importance Sampling for Minibatches
Importance Sampling for Minibatches
Dominik Csiba
Peter Richtárik
111
117
0
06 Feb 2016
Kalman-based Stochastic Gradient Method with Stop Condition and
  Insensitivity to Conditioning
Kalman-based Stochastic Gradient Method with Stop Condition and Insensitivity to Conditioning
V. Patel
94
35
0
03 Dec 2015
Distributed Mini-Batch SDCA
Distributed Mini-Batch SDCA
Martin Takáč
Peter Richtárik
Nathan Srebro
87
50
0
29 Jul 2015
Primal Method for ERM with Flexible Mini-batching Schemes and Non-convex
  Losses
Primal Method for ERM with Flexible Mini-batching Schemes and Non-convex Losses
Dominik Csiba
Peter Richtárik
92
23
0
07 Jun 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
146
273
0
16 Apr 2015
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization
Zheng Qu
Peter Richtárik
Martin Takáč
Olivier Fercoq
ODL
131
99
0
08 Feb 2015
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
Zheng Qu
Peter Richtárik
83
130
0
27 Dec 2014
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Zheng Qu
Peter Richtárik
Tong Zhang
155
58
0
21 Nov 2014
1