ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.2066
  4. Cited By
Learning Theory for Distribution Regression

Learning Theory for Distribution Regression

8 November 2014
Z. Szabó
Bharath K. Sriperumbudur
Barnabás Póczós
Arthur Gretton
    OOD
ArXivPDFHTML

Papers citing "Learning Theory for Distribution Regression"

10 / 10 papers shown
Title
Kernel Quantile Embeddings and Associated Probability Metrics
Kernel Quantile Embeddings and Associated Probability Metrics
Masha Naslidnyk
Siu Lun Chau
F. Briol
Krikamol Muandet
59
0
0
26 May 2025
Integral Imprecise Probability Metrics
Integral Imprecise Probability Metrics
Siu Lun Chau
Michele Caprio
Krikamol Muandet
61
0
0
22 May 2025
Regularized least squares learning with heavy-tailed noise is minimax optimal
Regularized least squares learning with heavy-tailed noise is minimax optimal
Mattes Mollenhauer
Nicole Mücke
Dimitri Meunier
Arthur Gretton
45
0
0
20 May 2025
Bayesian Density-Density Regression with Application to Cell-Cell Communications
Bayesian Density-Density Regression with Application to Cell-Cell Communications
Khai Nguyen
Yang Ni
Peter Mueller
47
0
0
17 Apr 2025
Improved learning theory for kernel distribution regression with two-stage sampling
Improved learning theory for kernel distribution regression with two-stage sampling
François Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
113
2
0
28 Jan 2025
Demystifying amortized causal discovery with transformers
Demystifying amortized causal discovery with transformers
Francesco Montagna
Max Cairney-Leeming
Dhanya Sridhar
Francesco Locatello
CML
94
1
0
27 May 2024
k-NN Regression Adapts to Local Intrinsic Dimension
k-NN Regression Adapts to Local Intrinsic Dimension
Samory Kpotufe
233
128
0
19 Oct 2011
Kernels for Vector-Valued Functions: a Review
Kernels for Vector-Valued Functions: a Review
Mauricio A. Alvarez
Lorenzo Rosasco
Neil D. Lawrence
GP
150
918
0
30 Jun 2011
Hilbert space embeddings and metrics on probability measures
Hilbert space embeddings and metrics on probability measures
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Bernhard Schölkopf
Gert R. G. Lanckriet
154
741
0
30 Jul 2009
Multi-Instance Learning by Treating Instances As Non-I.I.D. Samples
Multi-Instance Learning by Treating Instances As Non-I.I.D. Samples
Zhi Zhou
Yu-Yin Sun
Yu-Feng Li
108
476
0
12 Jul 2008
1