Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1411.2066
Cited By
Learning Theory for Distribution Regression
8 November 2014
Z. Szabó
Bharath K. Sriperumbudur
Barnabás Póczós
Arthur Gretton
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Theory for Distribution Regression"
10 / 10 papers shown
Title
Kernel Quantile Embeddings and Associated Probability Metrics
Masha Naslidnyk
Siu Lun Chau
F. Briol
Krikamol Muandet
59
0
0
26 May 2025
Integral Imprecise Probability Metrics
Siu Lun Chau
Michele Caprio
Krikamol Muandet
61
0
0
22 May 2025
Regularized least squares learning with heavy-tailed noise is minimax optimal
Mattes Mollenhauer
Nicole Mücke
Dimitri Meunier
Arthur Gretton
47
0
0
20 May 2025
Bayesian Density-Density Regression with Application to Cell-Cell Communications
Khai Nguyen
Yang Ni
Peter Mueller
47
0
0
17 Apr 2025
Improved learning theory for kernel distribution regression with two-stage sampling
François Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
115
2
0
28 Jan 2025
Demystifying amortized causal discovery with transformers
Francesco Montagna
Max Cairney-Leeming
Dhanya Sridhar
Francesco Locatello
CML
94
1
0
27 May 2024
k-NN Regression Adapts to Local Intrinsic Dimension
Samory Kpotufe
252
128
0
19 Oct 2011
Kernels for Vector-Valued Functions: a Review
Mauricio A. Alvarez
Lorenzo Rosasco
Neil D. Lawrence
GP
154
918
0
30 Jun 2011
Hilbert space embeddings and metrics on probability measures
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Bernhard Schölkopf
Gert R. G. Lanckriet
158
741
0
30 Jul 2009
Multi-Instance Learning by Treating Instances As Non-I.I.D. Samples
Zhi Zhou
Yu-Yin Sun
Yu-Feng Li
110
476
0
12 Jul 2008
1