ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.2581
  4. Cited By
Deep Exponential Families

Deep Exponential Families

10 November 2014
Rajesh Ranganath
Linpeng Tang
Laurent Charlin
David M. Blei
    BDL
ArXiv (abs)PDFHTML

Papers citing "Deep Exponential Families"

48 / 48 papers shown
Title
Convolutional Deep Exponential Families
Convolutional Deep Exponential Families
Chengkuan Hong
C. Shelton
32
0
0
27 Oct 2021
Lightweight Data Fusion with Conjugate Mappings
Lightweight Data Fusion with Conjugate Mappings
C. Dean
Stephen J. Lee
Jason L. Pacheco
John W. Fisher III
23
1
0
20 Nov 2020
Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference
Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference
Hao Zhang
Bo Chen
Yulai Cong
D. Guo
Hongwei Liu
Mingyuan Zhou
BDL
67
28
0
15 Jun 2020
A probabilistic assessment of the Indo-Aryan Inner-Outer Hypothesis
A probabilistic assessment of the Indo-Aryan Inner-Outer Hypothesis
C. Cathcart
56
15
0
29 Nov 2019
Poisson-Randomized Gamma Dynamical Systems
Poisson-Randomized Gamma Dynamical Systems
Aaron Schein
Scott W. Linderman
Mingyuan Zhou
David M. Blei
Hanna M. Wallach
68
19
0
28 Oct 2019
Tightening Bounds for Variational Inference by Revisiting Perturbation
  Theory
Tightening Bounds for Variational Inference by Revisiting Perturbation Theory
Robert Bamler
Cheng Zhang
Manfred Opper
Stephan Mandt
41
3
0
30 Sep 2019
Towards Verified Stochastic Variational Inference for Probabilistic
  Programs
Towards Verified Stochastic Variational Inference for Probabilistic Programs
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
70
26
0
20 Jul 2019
Convolutional Poisson Gamma Belief Network
Convolutional Poisson Gamma Belief Network
Chaojie Wang
Bo Chen
Sucheng Xiao
Mingyuan Zhou
87
15
0
14 May 2019
The Medical Deconfounder: Assessing Treatment Effects with Electronic
  Health Records
The Medical Deconfounder: Assessing Treatment Effects with Electronic Health Records
Linying Zhang
Yixin Wang
A. Ostropolets
J. J. Mulgrave
David M. Blei
G. Hripcsak
BDLCML
136
1
0
03 Apr 2019
Time Series Deconfounder: Estimating Treatment Effects over Time in the
  Presence of Hidden Confounders
Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders
Ioana Bica
Ahmed Alaa
M. Schaar
BDLCMLAI4TS
86
114
0
01 Feb 2019
We Are Not Your Real Parents: Telling Causal from Confounded using MDL
We Are Not Your Real Parents: Telling Causal from Confounded using MDL
David Kaltenpoth
Jilles Vreeken
CML
114
22
0
21 Jan 2019
GO Gradient for Expectation-Based Objectives
GO Gradient for Expectation-Based Objectives
Yulai Cong
Miaoyun Zhao
Ke Bai
Lawrence Carin
150
16
0
17 Jan 2019
Dirichlet belief networks for topic structure learning
Dirichlet belief networks for topic structure learning
He Zhao
Lan Du
Wray Buntine
Mingyuan Zhou
OODBDL
67
44
0
02 Nov 2018
Using Large Ensembles of Control Variates for Variational Inference
Using Large Ensembles of Control Variates for Variational Inference
Tomas Geffner
Justin Domke
BDL
95
35
0
30 Oct 2018
Good Initializations of Variational Bayes for Deep Models
Good Initializations of Variational Bayes for Deep Models
Simone Rossi
Pietro Michiardi
Maurizio Filippone
BDL
130
22
0
18 Oct 2018
Pathwise Derivatives Beyond the Reparameterization Trick
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
176
113
0
05 Jun 2018
A Forest Mixture Bound for Block-Free Parallel Inference
A Forest Mixture Bound for Block-Free Parallel Inference
Neal Lawton
Aram Galstyan
Greg Ver Steeg
39
0
0
17 May 2018
The Blessings of Multiple Causes
The Blessings of Multiple Causes
Yixin Wang
David M. Blei
AI4CECML
70
291
0
17 May 2018
Sampling-free Uncertainty Estimation in Gated Recurrent Units with
  Exponential Families
Sampling-free Uncertainty Estimation in Gated Recurrent Units with Exponential Families
Seong Jae Hwang
Ronak R. Mehta
Hyunwoo J. Kim
Vikas Singh
BDLUQCV
61
3
0
19 Apr 2018
Locally Private Bayesian Inference for Count Models
Locally Private Bayesian Inference for Count Models
Aaron Schein
Zhiwei Steven Wu
Alexandra Schofield
Mingyuan Zhou
Hanna M. Wallach
156
37
0
22 Mar 2018
WHAI: Weibull Hybrid Autoencoding Inference for Deep Topic Modeling
WHAI: Weibull Hybrid Autoencoding Inference for Deep Topic Modeling
Hao Zhang
Bo Chen
D. Guo
Mingyuan Zhou
BDL
80
118
0
04 Mar 2018
Faithful Inversion of Generative Models for Effective Amortized
  Inference
Faithful Inversion of Generative Models for Effective Amortized Inference
Stefan Webb
Adam Goliñski
R. Zinkov
Siddharth Narayanaswamy
Tom Rainforth
Yee Whye Teh
Frank Wood
TPM
134
47
0
01 Dec 2017
Perturbative Black Box Variational Inference
Perturbative Black Box Variational Inference
Robert Bamler
Cheng Zhang
Manfred Opper
Stephan Mandt
BDL
77
40
0
21 Sep 2017
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction
Hossein Soleimani
J. Hensman
Suchi Saria
81
60
0
16 Aug 2017
Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic
  Gradient Riemannian MCMC
Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC
Yulai Cong
Bo Chen
Hongwei Liu
Mingyuan Zhou
BDL
74
66
0
06 Jun 2017
Neural Models for Documents with Metadata
Neural Models for Documents with Metadata
Dallas Card
Chenhao Tan
Noah A. Smith
BDL
96
122
0
25 May 2017
Proximity Variational Inference
Proximity Variational Inference
Jaan Altosaar
Rajesh Ranganath
David M. Blei
BDL
43
22
0
24 May 2017
VAE Learning via Stein Variational Gradient Descent
VAE Learning via Stein Variational Gradient Descent
Yunchen Pu
Zhe Gan
Ricardo Henao
Chunyuan Li
Shaobo Han
Lawrence Carin
DRL
74
6
0
18 Apr 2017
Conjugate-Computation Variational Inference : Converting Variational
  Inference in Non-Conjugate Models to Inferences in Conjugate Models
Conjugate-Computation Variational Inference : Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models
Mohammad Emtiyaz Khan
Wu Lin
BDL
77
137
0
13 Mar 2017
Hierarchical Implicit Models and Likelihood-Free Variational Inference
Hierarchical Implicit Models and Likelihood-Free Variational Inference
Dustin Tran
Rajesh Ranganath
David M. Blei
VLMGAN
115
99
0
28 Feb 2017
Bayesian Boolean Matrix Factorisation
Bayesian Boolean Matrix Factorisation
Tammo Rukat
Chris C. Holmes
Michalis K. Titsias
C. Yau
79
32
0
20 Feb 2017
Multi-Layer Generalized Linear Estimation
Multi-Layer Generalized Linear Estimation
Andre Manoel
Florent Krzakala
M. Mézard
Lenka Zdeborová
66
54
0
24 Jan 2017
Natural-Parameter Networks: A Class of Probabilistic Neural Networks
Natural-Parameter Networks: A Class of Probabilistic Neural Networks
Hao Wang
Xingjian Shi
Dit-Yan Yeung
BDL
99
83
0
02 Nov 2016
Reparameterization Gradients through Acceptance-Rejection Sampling
  Algorithms
Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms
C. A. Naesseth
Francisco J. R. Ruiz
Scott W. Linderman
David M. Blei
BDL
148
107
0
18 Oct 2016
The Generalized Reparameterization Gradient
The Generalized Reparameterization Gradient
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
BDL
137
169
0
07 Oct 2016
Deep Survival Analysis
Deep Survival Analysis
Rajesh Ranganath
A. Perotte
Noémie Elhadad
David M. Blei
186
199
0
06 Aug 2016
Exponential Family Embeddings
Exponential Family Embeddings
Maja R. Rudolph
Francisco J. R. Ruiz
Stephan Mandt
David M. Blei
117
107
0
02 Aug 2016
Gaussian variational approximation with sparse precision matrices
Gaussian variational approximation with sparse precision matrices
Linda S. L. Tan
David J. Nott
140
76
0
18 May 2016
Nonparametric Bayesian Negative Binomial Factor Analysis
Nonparametric Bayesian Negative Binomial Factor Analysis
Mingyuan Zhou
50
38
0
25 Apr 2016
Overdispersed Black-Box Variational Inference
Overdispersed Black-Box Variational Inference
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
153
47
0
03 Mar 2016
Auxiliary Deep Generative Models
Auxiliary Deep Generative Models
Lars Maaløe
C. Sønderby
Søren Kaae Sønderby
Ole Winther
DRLGAN
112
451
0
17 Feb 2016
High-Order Stochastic Gradient Thermostats for Bayesian Learning of Deep
  Models
High-Order Stochastic Gradient Thermostats for Bayesian Learning of Deep Models
Chunyuan Li
Changyou Chen
Kai Fan
Lawrence Carin
BDL
96
25
0
23 Dec 2015
Gamma Belief Networks
Gamma Belief Networks
Mingyuan Zhou
Yulai Cong
Bo Chen
BDL
110
87
0
09 Dec 2015
The Variational Gaussian Process
The Variational Gaussian Process
Dustin Tran
Rajesh Ranganath
David M. Blei
BDL
131
186
0
20 Nov 2015
Why are deep nets reversible: A simple theory, with implications for
  training
Why are deep nets reversible: A simple theory, with implications for training
Sanjeev Arora
Yingyu Liang
Tengyu Ma
96
54
0
18 Nov 2015
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRLVLM
111
337
0
07 Nov 2015
The Poisson Gamma Belief Network
The Poisson Gamma Belief Network
Mingyuan Zhou
Yulai Cong
Bo Chen
BDL
66
53
0
06 Nov 2015
Stochastic gradient descent methods for estimation with large data sets
Stochastic gradient descent methods for estimation with large data sets
Dustin Tran
Panos Toulis
E. Airoldi
55
14
0
22 Sep 2015
1